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1 The Power of Symmetry

1.1 Noether’s Theorem

Symmetry has proven to be an extremely powerful way of organizing our physics thoughts
about Nature. You are probably already familiar with 10 spacetime symmetries from study of
relativity: 4 spacetime translations, 3 spatial rotations, and 3 Lorentz boosts. Conservation
laws associated to them ensure both linear and angular momentum conservation as well as
sensible centre of mass motion. The counting goes similarly in other spacetime dimensions,
except that in D dimensions there are D translation parameters, d = D−1 boost parameters,
and d(d− 1)/2 rotation parameters.

Other symmetries, such as the U(1) gauge symmetry of electromagnetism, act on the
fields rather than on the coordinates. Field space, as distinct from spacetime, is usually
referred to as the internal space for the field, rather than the external space of the
coordinates. The charge carried by a field can be thought of as like a handle pointing in field
space, onto which a gauge boson can grab.

Gauge fields can be in three distinct phases of physical behaviour. The most familiar
from our undergraduate work is the Coulomb phase, resulting in an inverse-square law in
four spacetime dimensions as per intuition. Alternatively, like for QCD at low energy, the
gauge field can be in a confined phase. The third possibility is the one we will explore in
the next chapter, and is known as the Higgs phase with spontaneous symmetry breaking.

A very important theorem proved by Emmy Noether1 says that every continuous sym-
metry gives rise to a conservation law. To see how to prove this, let us consider a general
symmetry transformation which may act on both fields and coordinates. For the coordinates,
we write

xµ → xµ ′ = xµ + δxµ . (1)

Internal symmetries act directly on the fields, which are said to carry a representation of
the symmetry group. So let us consider a general collection of fields {φa}, where a represents
a general index which might or might not have anything to do with spacetime indices. Under
a symmetry transformation, the total variation of the field is

∆φa = φa ′(x′)− φa(x)
= φa ′(x′) + [−φa ′(x) + φa ′(x)]− φa(x)
= [φa ′(x′)− φa ′(x)] + [φa ′(x)− φa(x)]
= (∂µφ

a)δxµ + δφa(x) , (2)

where in the last step we used the chain rule for differentiation. Notice that we have obtained
the second term from the direct functional variation of the field while the first, known as the
transport term, arose more indirectly through the dependence of the field on coordinates.
This is why we distinguish notationally between field variations δφ and total variations ∆φ.

To prove Noether’s theorem, consider the action for the fields {φa}:

S =

∫
dDxL [φa] . (3)

1Woohoo! a woman!
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Then

δS =

∫ [
δ(dDx)L [φa] + dDx(δL )

]
. (4)

How does the measure of integration vary under such a symmetry transformation? Let us
define the Jacobian J(x′|x): dDx′ = dDxJ(x′|x). We have

∂xµ ′

∂xν
=

∂

∂xν
{xµ + δxµ} = δµν + ∂ν(δx

µ) . (5)

Therefore, to first order in small quantities,

J(x′|x) = 1 + ∂µ(δxµ) + ... . (6)

How about variations in the Lagrangian? Assuming that our action involves no more than
first derivatives, we have, by the chain rule,

δL =
∂L

∂φa
δφa +

∂L

∂∂µφa
δ(∂µφ

a) +
∂L

∂xµ
δxµ . (7)

Note that, for functional derivatives, we have the handy identity

δ(∂µφ
a) = ∂µ(δφa) . (8)

Therefore, counting the variation of both the measure and the integrand, we have

δS =

∫
dDx

{
(∂µδx

µ)L +
∂L

∂φa
δφa +

∂L

∂∂µφa
∂µ(δφa) + ∂µL δxµ .

}
(9)

Grouping together the first and fourth terms, and pulling the derivative in the third term
past the canonical momenta Πµ

a = ∂L /∂∂µφ
a gives

δS =

∫
dDx

{
∂µ

[
L δxµ +

∂L

∂∂µφa
δφa
]

+

[
∂L

∂φa
− ∂µ

(
∂L

∂∂µφa

)]
δφa
}
. (10)

Using the Euler-Lagrange equations to kill the second [· · · ] term, and adding and subtracting
a term Πµ

a(∂λφ
a)δxλ, gives

δS =

∫
dDx ∂µ

{
∂L

∂∂µφa
[
δφa + (∂λφ

a)δxλ
]
−
[
∂L

∂∂µφa
(∂λφ

a)− δµλL
]
δxλ
}
. (11)

Defining a new quantity known as the canonical energy-momentum tensor

T µλ ≡
∂L

∂∂µφa
(∂λφ

a)− δµλL , (12)

gives

δS =

∫
dDx ∂µ

{
∂L

∂∂µφa
∆φa − T µλδx

λ

}
(13)
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(For the case of curved spacetime, we would need to recruit the more powerful definition

TGR
µν =

2√
−g

δS

δgµν
, (14)

and to use the formalism of Killing tensors to express conservation laws.)
So far, we have an OK-looking formula for the variation of the action. But in order to

derive the sought-after conservation law, we need to know how the symmetry variations of
the fields and of the spacetime coordinates are connected to the infinitesimal parameters
of the continuous symmetry {∆ωA}. Note that a priori the parameter index label A has
nothing to do with the field index label a; in particular, the number of values A can take is
typically quite different from those for a. In this notation we can then write

∆xµ ≡
(

∆xµ

∆ωA

)
∆ωA ,

∆φa ≡
(

∆φa

∆ωA

)
∆ωA . (15)

Accordingly, the functional variation of the action can be written

δS =

∫
dDx

[
∂µ

{
∂L

∂∂µφa
∆φa

∆ωA
− T µν

∆xν

∆ωA

}]
∆ωA . (16)

Since this holds true for arbitrary parameters ∆ωA, it follows that

∂µJ
µ
A = 0 , (17)

where the conserved Noether current JµA is defined as

JµA ≡
∂L

∂∂µφa
∆φa

∆ωA
− T µν

∆xν

∆ωA
. (18)

You should check for yourself that using this continuity equation (17), Stokes’ Theorem, and
assuming that the spatial current falls off quickly enough at spatial infinity, gives a conserved
charge QA:

dQA

dt
= 0 where QA =

∫
ddxJ0

A . (19)

Here are some good exercises to try, to check your understanding. In the case of spacetime
translations, you should find by working through all the steps explicitly that the conserved
quantities are the spacetime momenta, because Tµν is the flux of µ-momentum in the ν direc-
tion. For rotations and boosts, you should find that the corresponding conserved quantities
are proportional to

Qνλ =

∫
ddx

(
T 0νxλ − T 0λxν

)
, (20)

i.e. first moments of the energy-momentum tensor. The space-space components Qij are
indeed the familiar angular momenta. Check also that conservation of the space-time com-
ponents Q0i expresses the fact that the centre of mass moves at constant velocity.
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Next, consider a free complex scalar field Φ = (φ1 + iφ2)/
√

2, where φ1,2 are real scalar
fields, and symmetry under U(1) phase rotations Φ′ = eiqαΦ. By writing out the variations
under a phase rotation, you can show that the Noether current following from U(1) symmetry
is

Jµ = −iq [Φ∗(∂µΦ)− (∂µΦ∗)Φ] . (21)

Remember first quantization for scalar fields from QFT1? Using the standard expansion of
the field operator in terms of plane waves with operator coefficients, you can show that the
Noether charge is

Q = q

∫
ddk(b†kbk − c

†
kck) , (22)

where bk create particles and ck create antiparticles with momentum k. It is also illustrative
to work out the commutator of the charge operator Q with the fields Φ and Φ†.

1.2 Lie groups and the Poincaré group

Our focus in this section is on continuous symmetries parametrized by a finite number of con-
tinuous parameters. Mathematically, a bunch of symmetry transformations forms a group
if the following axioms are obeyed: (i) closure under group multiplication, (ii) associativity
of group multiplication, (iii) existence of an identity, and (iv) existence of inverses for every
group element. When group transformations act on fields in a well-defined fashion, the fields
are said to carry a representation of the group G. Mathematically, a representation is
a linear group action of G on a vector space V by invertible transformations v 7→ D(g)v.
It must obey linearity, D(g)(αv1+βv2) = αD(g)v1+βD(g)v2, and also the product rule,
D(g1g2) = D(g1)D(g2); the rule for inverses is D(g−1) = D(g)−1. A representation is said to
be faithful if D(g) is the identity only for the identity element. Figuring out what kinds of
representations are possible for a given symmetry group is known as tensor analysis.

The simplest example of group theoretic organization of symmetry information that we
have already met in undergraduate quantum mechanics is the rotation group describing
angular momenta. The spherical harmonics |j,m〉 carry a representation of the rotation

group and obey the eigenvalue equations2 ~J2|j,m〉 = j(j + 1)|j,m〉 and J3|j,m〉 = m|j,m〉,
where j is the principal quantum number and m is the projection along the z-axis, with
|m| ≤ j. The ladder operators J± ≡ J1±iJ2 raise/lower the m quantum number, J±|j,m〉 =
|j,m± 1〉 for ±m 6= j or 0 otherwise. Note that in this story, a role of primary importance

is played by the square of the angular momentum ~J2, which commutes with each J i. The
algebra obeyed by the J i is

[J i, J j] = iεijkJk , i = 1, 2, 3. (23)

The spin j is quantized to take integer or half-integer values.
A general Lie group transformation U ∈ G in any representation can be written as

U = exp
(
iωATA

)
, (24)

where the {TA} are known as the generators which live in the Lie algebra G of the Lie
group G of transformations. The generators TA are as numerous as the additive parameters

2We have suppressed factors of c and ~.
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ωA: the index A runs from 1 to d(G), the rank of the symmetry group. From a mathematics
perspective, the existence of this exponential map described in eq.(24) is nontrivial; as physi-
cists, we will simply use it. It is important to note that the generators of symmetries TA

will generically act differently on fields than on coordinates. For example, a purely internal
symmetry will only act nontrivially on the fields and not at all on the coordinates.

Regardless of the representation they are acting upon, the generators obey a Lie algebra[
TA, TB

]
= ifABCTC , (25)

where the fABC are known as the structure constants and are group-specific. Structure
constants matter because everything important we need to know about a Lie group is encoded
in its structure constants. The generators of a Lie algebra obey an identity known as the
Jacobi identity,

[TA, [TB, TC ]] + [TB, [TC , TA]] + [TC , [TA, TB]] = 0 . (26)

The Cartan subalgebra of a Lie algebra is the collection of generators that commute with
all other generators.

There is a great variety of representations available for Lie groups of interest to physi-
cists. The simplest kind of faithful representation is the fundamental representation, for
which the fields φ transform like vectors under the action of group elements U behaving like
matrices,

φ′ = U φ . (27)

These matrices are d(f) × d(f) matrices, where d(f) is the dimension of the fundamental
representation f . For many physics applications, such as the SU(3)c×SU(2)I×U(1)Y of the
Standard Model of particle physics, quarks and leptons live in the fundamental representation
and it is complex. As we can see by Taylor expanding (24), the infinitesimal form of a group
transformation acting on a fundamental representation is

∆φ = i∆ωA
(
TAf
)
φ . (28)

The above formula is handy when figuring out Noether currents, because it quickly gives us
one of the puzzle pieces:

∆φa

∆ωA
= i
(
TAf
)a
b
φb . (29)

For applications to gauge theories, another useful representation is the adjoint represen-
tation, which you will play with later in a homework assignment. For a field A living in the
adjoint representation,

A′ = U AU−1 , (30)

from which we can quickly infer the infinitesimal form

∆A = i∆ωB[TBAdj, A] . (31)

In the adjoint representation Adj, the generators are d(G) × d(G) matrices proportional to
the structure constants, where d(G) is the rank of the group,

(TAAdj)
BC = −ifABC . (32)
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The Lie algebra works out correctly in this adjoint representation because of the Jacobi
identity. Since the structure constants are real and antisymmetric, TAAdj = −(TAAdj)

∗, and so
the adjoint representation is real. Gauge potentials will turn out to live in the adjoint.

The normalization of the generators TA is a matter of convention, and it is important to
set a consistent convention because the Lie algebra eq.(25) is not invariant under a change
of basis. In any representation, we can write

Tr
(
TAr T

B
r

)
= C (r)δAB , (33)

where C (r) is fixed for any given representation r and is known as the index of the repre-
sentation. We can readily prove from this that

fABC = − i

C (r)
Tr
(
[TAr , T

B
r ]TCr

)
. (34)

Lie groups have an analogue of ~J2 for angular momentum, known as the quadratic
Casimir, which can be readily shown to commute with all the TA. It is built out of the sum
of squares of the generators,

d(G)∑
A=1

TAr T
A
r = C2(r)1r . (35)

In eq.(35), the matrix 1r is a d(r)×d(r) matrix, where d(r) is the dimension of the represen-
tation r, and it must appear on the RHS of the above equation by Schur’s lemma. Taking
the trace of this formula yields the handy identity

d(G)C (r) = d(r)C2(r) . (36)

For the SU(N) groups which are heavily used in theoretical particle physics applications,
the tradition is to choose C (f) = 1/2,

Tr
(
TAf T

B
f

)∣∣
SU(N)

=
1

2
δAB . (37)

This convention is the one we will use in homework assignments and the final exam.

What kinds of Lie groups might we encounter3 in theoretical physics? Matrix Lie groups
include

• GL(n), general linear: invertible
• SL(n), special linear: det(S) = +1
• U(n), unitary: U † = U−1

• O(n), orthogonal: OT = O−1

• SU(n), special unitary
• SO(n), special orthogonal

• Sp(n), symplectic: SgS† = g where g is a 2n× 2n matrix g =

(
0 +1
−1 0

)
.

3Discrete groups and their irreps are pertinent to crystallography and other physics applications; we will
not develop their representation theory here.
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Note that the above notational conventions are specific to the Lie groups. The Lie algebras
are normally denoted by the same symbols but with small letters rather than capital letters.
For instance, the Lie algebra for SU(3) is denoted su(3).

A Lie group manifold that is finite-dimensional and compact is called a compact group.
If the group has no U(1) factors, it is called semi-simple. If in addition the algebra cannot
be divided into two mutually commuting sets of generators, then it is simple. Back in the
19th century, Killing and Cartan classified all the compact simple Lie algebras, and they are
known as the classical groups. They are: SU(N), SO(N), and Sp(N) for arbitrary N , and
the exceptional groups G2, F4, E6, E7, and E8. We will not say anything more about the
five exceptional groups except to mention that they are used in building GUTs and appear
in compactifications of superstring theory. SU(N) is all we need to know about to handle
the Standard Model.

From the definition of the special orthogonal group, it is clear that matrices M ∈ SO(D)
obey

MT
1M = 1 . (38)

When we are working in Lorentzian signature spacetime, we are interested in coordinate
transformations that preserve the Minkowski norm rather than the Euclidean norm,

MTηM = η , (39)

where η = diag(1,−1, . . . ,−1). Such matrices M are said to belong to the group SO(1, d);
in our 4D case, this is SO(1, 3). More generally, if we preserved a Lorentzian norm with
p (+1) entries and q (−1) entries, we would have the group SO(p, q). These groups are
non-compact.

How about a basic example of a Lie group and a fundamental representation? Physicists
always appreciate seeing a minimal working example of some concept. Consider first a simple
U(1) phase rotation of a complex field φ with parameter {ωA} = {θ}. We know how this
operates:

φ′ = eiθφ . (40)

So in this case, the generator is just 1. That was easy! Let us also inspect a slightly less
nontrivial example involving an external symmetry: translations in the x1 direction. For this
case, we also have only one parameter: {ωA} = {x1}. For the 1D translation group, which
is Abelian, the simplest nontrivial irreducible representation (or irrep for short) is a 1D
plane wave: φ = eip1x

1
. When acting on this plane wave, the momentum operator p1 can be

represented as p1 = −i∂1. Why does this work? First, the sign. We have set our conventions
to ensure that the standard position-momentum commutators work: [x1, p1] = i~. Second,
this representation of the momentum operator gives the correct eigenvalue equation when
acting on the 1D plane wave: (−i∂1)φ = p1φ. So in this case, the generator of x1 translations
acting on 1D plane waves eip1x

1
is −i∂1, and the momentum eigenvalue is p1. Note: if instead

of a continuous translation symmetry we only had symmetry under translations by a lattice
vector, we would get Bloch waves instead of plane waves.

A physically important property of the parameters of Lie groups is their additivity.
Composition of two transformations along the same generator is described simply by adding
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their parameters. For rotations, this means we are talking about angles; for translations, the
story is all about their vectors. For Lorentz boosts, however, velocity is not additive under
composition. The correct (additive) parameter to use is the rapidity ζ, defined by

v

c
= tanh ζ . (41)

As you should check for yourself explicitly, rapidity adds simply under composition of Lorentz
boosts. Note that boost rapidities obey ζ ∈ (−∞,+∞), a non-compact interval. Accord-
ingly, the Poincaré group is a non-compact Lie group. By contrast, the rotation group is
compact, as its angle parameters obey θ ∈ [0, 2π].

What is the group of symmetries symmetries of flat Minkowski spacetime? Consider our
old friends position Xµ and momentum P ν . As we saw above with the simple 1D plane wave
example, the momentum can be thought of as the generator of translations,

Pµ = −i∂µ , (42)

where the index parametrizes the directionality of the translation in spacetime. The total
angular momentum generator Mµν is defined4 by

Mµν = Lµν + Σµν = (−XµPν +XνPµ) + Σµν ,

where Lµν encodes the orbital angular momentum and Σµν the spin angular momentum.
The M0i correspond to generators of Lorentz boosts, with the index i encoding the spatial
directionality of the boost vector. The Mij correspond to angular momentum generators:
notice that each is defined by an antisymmetrized pair [ij] corresponding to the plane of
rotation for that angular generator.

The commutation relations for the generators of the Poincaré algebra are

[Pµ, Pν ] = 0 ,

[Pµ,Mρσ] = +i (ηµρPσ − ηµσPρ) ,
[Mµν ,Mρσ] = +i (ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ) .

(43)

The Poincaré group, the symmetry group of flat D = d + 1 dimensional spacetime, is
mathematically referred to as the semi-direct product of the Lorentz group SO(1, d)
with the translation group. It is a semi-direct product, rather than a direct product, because
translation vectors get Lorentz-transformed under boosts and rotations: they behave, exactly
as they should, like one-index tensors.

How do the Σµν act? For scalar fields the action of spin generators Σµν on them is, of
course, trivial (they have no spin, so nothing happens). For the case of spin-half Dirac fermion
representations, the spin generators are proportional to the two-index antisymmetrized prod-
uct of gamma-matrices: (Σµν)αβ = i([γµ, γν ])αβ/4. For spin one representations, the spin
generators are also constant matrices, built of antisymmetric combinations of Minkowski
metric tensors: (Σρσ)µν = i(ηρµη

σ
ν − ησµηρν).

4Our signature convention is mostly minus.
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1.3 Origin of wave equations

Our story so far is independent of the dimensionality of spacetime and works for any spin.
For the case of three spatial dimensions (and only for d = 3), we can write down an angular
momentum pseudovector Ji defined by Ji = 1

2
εijkMjk. (Note: these Ji commute with the

Hamiltonian.) The boosts generators, by contrast, are defined by M0i = Ki. (Note: the Kj

do not commute with the Hamiltonian!) They have nontrivial commutators with the angular
momenta:

[Ji, Jj] = +iεijkJk , [Ji, Kj] = +iεijkKk , [Ki, Kj] = −iεijkJk . (44)

Defining Ni = (Ji + iKi)/2 and näıvely defining N †i = (Ji − iKi)/2 makes the algebra split
apart:

[Ni, Nj] = iεijkNk ,
[
N †i , N

†
j

]
= iεijkN

†
k ,

[
Ni, N

†
j

]
= 0 . (45)

This is a direct consequence of the mathematical fact that there is an isomorphism between
SO(4) and a direct product of two SU(2)s: SO(4) ' SU(2)×SU(2). Strictly speaking, it is
only in Euclidean space that we have this split of the Lorentz group into a SU(2)× SU(2).
The subtlety in Minkowski spacetime is that the boost generators Ki of the Lorentz algebra
so(1, 3) are actually not Hermitean, because boosts involve a non-compact parameter. (The
rotation generators are, meanwhile, Hermitean as their parameters are compact angles θ ∈
[0, 2π].) Why does this happen? Mathematically, unitary irreducible representations of non-
compact groups are infinite-dimensional, and so to get finite-dimensional representations
pertinent to physics we have to give up unitarity of boost matrices. Morally, we can think
of the Minkowski case with Lorentz symmetry SO(1, 3) as a simple Wick rotation of the
Euclidean case. This principle is sufficient to understand how classical and quantum fields
transform under spacetime symmetries.

We can then characterize any irreducible representation of the Lorentz group by its
angular momentum quantum numbers under each SU(2). For a state |jL, jR〉, the total spin
of the representation is jL + jR. Since both jL,R must be non-negative integers or half-odd-
integers, the total spin is also of this character. This follows from the familiar rules for
adding angular momenta, which themselves follow from the algebra of the Ji. For example,
a scalar field is the |0, 0〉 representation. A Weyl fermion is the |1

2
, 0〉 or |0, 1

2
〉 (depending

on handedness), while a Dirac fermion is the direct sum |1
2
, 0〉 ⊕ |0, 1

2
〉; parity flips the two

components. For spin one, our friend the vector potential Aµ corresponds to the |1
2
, 1

2
〉, with

the γµαβ playing the role of Clebsch-Gordan coefficient. The |0, 1〉 and |1, 0〉 correspond to
the self-dual and anti-self-dual components of the field strength tensor Fµν while the whole
banana would be |1, 0〉 ⊕ |0, 1〉. The graviton is the |1, 1〉 state. And so forth.

What is a wave equation for a field? It arises from analyzing how the field behaves under
Poincaré transformations: combinations of translations, rotations, and boosts. More detail
than we require may be found in the magnificent 3-volume “The Quantum Theory of Fields”
text by Steven Weinberg, among other places. My exposition here is closely related to the
simpler, more pedagogical exposition of Pierre Ramond in his classic text “Field Theory:
A Modern Primer” on functional quantization methods. For now, I will just sketch quickly
how it works for spin-half massless fermions.
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How do spin-half massless fermions transform under Lorentz transformations? Recall
that if we Wick rotate to Euclidean space, the 4D Lorentz group SO(1, 3) becomes SO(4),
which is isomorphic to SU(2) × SU(2). A nice basis for the generators of SU(2) acting on
spin-half fields is 1

2
σi, where the σi are the Pauli sigma matrices which obey

σiσj = δij + iεijkσk . (46)

They are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
. (47)

Then, Wick rotating back to Minkowski signature gives the following transformation laws.
Left-handed spinors transform as

ψL(x)→ ΛLψL(x) , (48)

where
ΛL = exp(i~σ · [~θ − i~ζ]/2) . (49)

In this expression, the ~θ are the rotation parameters while ~ζ are the boost parameters.
Right-handers transform as

ψR(x)→ ψ′R(x′) = ΛRψR(x) , (50)

where
ΛR = exp(i~σ · [~θ + i~ζ]/2) . (51)

A little algebraic fortitude yields an interesting fact: that under Lorentz transformations,
σ2ψ∗L transforms like a right-handed Weyl spinor. (To get the algebra to work out, it helps
to show that Λ−1

L = Λ†R, σ2ΛLσ
2 = Λ∗R, ΛT

Lσ
2ΛL = σ2, and similarly for L ↔ R.) More

pertinently to our goal at hand, we can also show that two available fermion bilinears, ψ†LψL
and ψ†σiψL, mix under boosts:

ψ†LψL → ψ†LψL + ∆ζ iψ†Lσ
iψL , ψ†Lσ

iψL → ψ†Lσ
iψL + ∆ζ iψ†LψL . (52)

Comparing the above with the general Lorentz transformation rule for 4-vectors

∆V µ = ∆εµ νV
ν (53)

where ε0i = −ζ i, we find that

(iψ†Lσ
µψL) = (iψ†LψL, iψ

†
L~σψL) (54)

is a bona fide four-vector under boosts. Showing that it is a bona fide four-vector under
rotations is similarly straightforward. We can also show that

(iψ†Rσ̄
µψR) = (iψ†RψR,−iψ

†
R~σψR) (55)

is a four-vector under boosts and rotations.
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Then, using the above information, it is simple to build a Poincaré invariant action for
a left- or right-handed Weyl fermion, by contracting with another handy four-vector lying
around: ∂µ. More precisely, in order to make an action for left-handers that is real, we need

S[ψL] =

∫
d4x

1

2
ψ†Lσ

µ←→∂µψL , (56)

where
a
←→
∂µ b ≡ a(∂µb)− (∂µa)b . (57)

Using this action, it is straightforward to write down the wave equation that follows for ψL.
The same sort of logic works for ψR with σµ → σ̄µ. Comparing the left- and right-handed
wave equations to the massless limit of the Dirac equation familiar from PHY2403F, you
will find that they are identical.

In summary, free particle wave equations arise from pure group theory – plus the as-
sumption that our action is built from lowest nontrivial order in derivatives, in the spirit of
effective field theory.

1.4 Origin of spin angular momentum and helicity

Casimir operators are symmetry generators which commute with all other symmetries.
Let us now figure out the analogues of ~J2 for the Poincaré group. There will turn out to
be two of them. To find the Casimirs, we need to identify those generators (which could
be composites) which commute with everybody. An obvious candidate is the square of the
momentum vector, which constitutes our first quadratic Casimir:

C1 = P µPµ (58)

Since translations form an Abelian group, the Casimir nature of C1 is guaranteed by the
commutation relations for the Lorentz algebra. Of course, C1 acts on states with momentum
pµ as5

P µPµ|pµ〉 = m2|pµ〉 (59)

It turns out to be a tad harder to find the second independent quadratic Casimir. To lay
the foundations, consider the Pauli-Lubański pseudovector W µ defined by

W µ ≡ 1
2
εµνλσPνMλσ (60)

Notice that, by symmetry,
W µPµ = 0 (61)

and
W µ = 1

2
εµνλσPνΣλσ (62)

As you should check explicitly using the Poincaré algebra commutation relations, the second
quadratic Casimir that commutes with everybody is

C2 = W µWµ (63)

5We have suppressed the factors of c and ~.
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As can be checked, these are the only two quadratic Casimirs for the Poincaré group. The
remaining interesting question then becomes: what is the value of W µWµ evaluated on
physical states? The answer to this turns out to depend sensitively on the value of m2.
There are four types of classes of momenta, originally classified by Eugene Wigner.

• pµpµ = m2 > 0, with p0 > 0. These are positive-energy massive particles.
• pµpµ = m2 = 0, with p0 > 0. These are positive-energy massless particles.
• pµ = 0. This corresponds to ... nothing. The vacuum.
• pµpµ = m2 < 0. These are either unphysical (free tachyons!) or virtual-only particles.

The Little Group for each class is defined to be the subgroup of Lorentz transformations
leaving the momentum vector pµ invariant. It characterizes the story of spin for a particle.

For the massive case, there exists a rest frame such that {pµ} = {m,~0}. Therefore,
the little group for this case is SO(d), the group of spatial rotations. Consider d = 3, the
case with which you are intuitively familiar. The little group for this case is SO(3), the
familiar group of spatial rotations. Therefore, in a very deep sense, spin really is an angular
momentum for massive particles6. To evaluate the value of the second quadratic Casimir
here, consider again our Pauli-Lubański vector W µ. We already know that W µPµ = 0
by symmetry. Now make use of the form of the momentum in rest frame to find that
{W µ} = {0, ~W}. So, in the rest frame,

Wi = 1
2
εi0jkP

0Σjk = −1
2
mε0ijkM

jk = 1
2
mεijkΣ

jk ≡ mc2Σi (64)

where Σi is a proper 3-vector. Therefore,

W νWν |pµ〉 = m2s(s+ 1)|pµ〉 (65)

For the massless case, a representative momentum is {pµ} = E{1, 0, . . . 0, 1}. Consider
again d = 3 as a special case. For d = 3 the little group is E(2), the Euclidean group
of rotations in the (x, y) plane combined with x and y translations. How about the value
of the quadratic Casimirs evaluated on a massless state? First, we already know that the
momentum four-vector squares to zero. Second, we also know that the Pauli-Lubański
pseudovector is orthogonal to the momentum vector. Third, because the mass is zero, the
Pauli-Lubański pseudovector also squares to zero. As you should check for yourself, the only
way for two null vectors to be orthogonal to one another in Lorentzian signature is for them
to be parallel. Here this implies directly that

Wµ = hPµ , (66)

where h is a pseudoscalar known as the helicity. By the definition of Wµ and Pµ and the
fact that h is a pseudoscalar, there can be only two allowed values for helicity: h = +|s|
and h = −|s|, where s is the spin. In this case, the spin data do not constitute an angular
momentum at all, but are instead characterised by helicity alone.

6Mathematically, SU(2) is isomorphic to the double cover of SO(3); the double covering is why spin must
be either integer or half-odd-integer.
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2 Gauge Symmetry

2.1 Abelian gauge symmetry and QED

We know the free Dirac fermion action7

S1/2 =

∫
dDx

[
iψ̄∂/ψ −mψ̄ψ

]
(67)

and the Maxwell action

S1 =

∫
dDx

[
−1

4
F µνFµν

]
(68)

Let us now try to work out the form of a Poincaré invariant interaction term between spin-
half matter fermions and massless spin-one gauge fields. Our fermion fields are the spinor ψ
and the conjugate spinor ψ̄, which are in the (0, 1

2
)⊕ (1

2
, 0) and (0, 1̄

2
)⊕ ( 1̄

2
, 0) representations

of SO(1, 3) respectively, while our vector is in the (1
2
, 1

2
) representation. Therefore, we are

in need of a Clebsch-Gordan coefficient that connects a spinor and a conjugate spinor to
a vector. The solution to this problem is called the gamma-matrix. To lowest order in
derivatives, the interaction lagrangian can be written as

Sint = q

∫
dDx

(
ψ̄γµψAµ

)
, (69)

where q is the electric charge. As you should check explicitly, another way to write the total
action is

SQED =

∫
dDx

[
ψ̄ {i (1∂/− iqA/)− 1m}ψ − 1

4
F µνFµν

]
(70)

In these conventions, the gauge-covariant derivative on spinors is

Dµ = 1∂µ − iqAµ , (71)

and so

SQED =

∫
dDx

[
ψ̄ (iD/−m)ψ − 1

4
F µνFµν

]
(72)

A local phase transformations of matter fields

ψ → eiqα(x)ψ(x) (73)

can be compensated – locally – by gauge transformation of the connection

Aµ → Aµ + ∂µα(x) (74)

The idea of gauge potential as compensator turns out to be a very powerful one, reaching
far beyond the case of U(1) for QED. The key advantage of the gauge-covariant derivative
is that it transforms covariantly under gauge transformations:

Dµψ(x)→ eiqα(x)Dµψ (75)

7For the sticklers: this is equivalent to the previously written fermion action, upon integration by parts.
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where
Dµ = ∂µ − iqAµ (76)

as above.
For the electron, the charge is q = −e. We then proceed to do perturbation theory as a

series in e2. More properly, reintroducing our units, this is a perturbation series in

αQED ≡
e2

~c
(77)

2.2 Nonabelian gauge symmetry

Consider local gauge transformations on matter fields Ψ(x) of the general form

Ψ→ Ψ′ = U(x) Ψ (78)

where U(x) (or U for short) is a spacetime-dependent matrix and Ψ is in the fundamental
representation. Generally such matrices U of the symmetry group will not commute with
one another. Accordingly, this is called a non-Abelian gauge transformation.

Because of the spacetime dependence in the above gauge transformation, partial deriva-
tives of matter fields do not transform covariantly. So let us introduce a compensator known
as the Yang-Mills gauge connection which allows us to sensibly define parallel transport
of matter fields. It is designed to ensure that the gauge-covariant derivative of a matter
field transforms covariantly:

DµΨ→ (DµΨ)′ = U(DµΨ) , (79)

where we have defined
DµΨ = ∂µΨ− igAµΨ . (80)

Here, the gauge field Aµ is an element of the Lie algebra:

Aµ = AAµT
A . (81)

More abstractly, the covariant derivative is

Dµ = 1∂µ − igAµ . (82)

As can be straightforwardly checked, the required transformation law for the non-Abelian
gauge potential Aµ is

Aµ → A′µ = UAµU
−1 − i

g
(∂µU)U−1 (83)

= UAµU
−1 +

i

g
U(∂µU

−1) , (84)

where in the last line we used the identity ∂(UU−1) = ∂(1) = 0. For infinitesimal parameters
∆ω, this transformation law reads

∆Aµ = i∆ωC [TC , Aµ] +
1

g
TC(∂µ∆ωC) , (85)
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or in component form

∆ACµ =
1

g

[
∂µ∆ωC + gfABCAAµ∆ωB

]
. (86)

How does the covariant derivative Dµ act on fields in the adjoint representation, such as the
gauge potential and gauge field strength? Let us write a field in the adjoint as χ = χCTC .
Then

(Dµχ)C = [(1∂µ − igAµ)χ]C

=
[
δCA∂µ − igABµ (TB)CA

]
χA

= ∂µχ
C + gfABCAAµχ

B , (87)

because (TA)BC = −ifABC . Therefore,

∆ACµ =
1

g
(Dµ∆ω)C . (88)

An important property of gauge-covariant derivatives is that they obey the commutator

[Dµ, Dν ] = −igFµν , (89)

where the gauge f
¯
ield strength is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (90)

Even though the gauge potential Aµ transforms like a connection under gauge transforma-
tions, as in (83), the field strength transforms covariantly,

Fµν → F ′µν = UFµνU
−1 . (91)

Note that F is not invariant under gauge transformations, but it is the closest thing possible
in a non-Abelian gauge theory: covariant.

Note also that there are many other ways of introducing the Yang-Mills gauge potential
and field strength. You can peruse QFT textbooks like the ones by Matthew Schwartz
(modern; recommended), Michael Peskin and Daniel Schroeder, and Pierre Ramond to see
some examples.

2.3 Yang-Mills Lagrangian and equations of motion

We can use the gauge field strength Fµν to build ourselves a gauge-invariant Lagrangian, by
tracing over the group indices8:

LYM = −1

2
Tr(F µνFµν) = −1

4
F µν AFA

µν . (92)

Note three very important facts that make Yang-Mills qualitatively different than Maxwell.
First, the gauge potential lives in the Lie algebra, Aµ = AAµT

A. Second, the field strength

8The relative factor of 2 comes from the normalization convention (37) for SU(N), Tr(TATB) = 1
2δ

AB .
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involves commutator terms quadratic in A, not just the covariant curl part linear in A like
for Maxwell: Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. Third, the non-Abelian generators of the
gauge symmetry TA obey nontrivial commutation relations, [TA, TB] = ifABCTC . Putting
these three facts together, we can see already that even the classical physics of Yang-Mills
is very different from that for the Maxwell field: the Yang-Mills Lagrangian contains
self-interactions of both cubic and quartic type.

This result is intimately related to the fact that superposition, a bedrock idea in elec-
tromagnetism, does not hold for Yang-Mills theories. It cannot: the field equations for AAµ
are inherently nonlinear. Note that in momentum space a Feynman diagram must involve a
power of momentum for the cubic self-coupling, by the definition of F in terms of A, whereas
the quartic self-coupling involves no powers of momentum for the same reason.

By contrast, there are no classical cubic or quartic interaction terms for the photon at all.
So the only way it is possible to get light-by-light scattering in QED is to involve quantum
loops. For instance, a scattering amplitude involving (say) four external photon legs has to
possess one internal loop with four fermion/antifermion propagators.

This diagram is O(α2
EM), which is higher-order than the classical four-point self-interaction

for Yang-Mills gauge fields. This essential difference makes the Feynman graph expansion
for non-Abelian gauge theory qualitatively different from that for QED. The nonlinearity
turns out to be physically essential for describing the quantum dynamics of the strong and
weak nuclear interactions.

Note: It is possible to perform a field redefinition

Aµ =
Ãµ
g
. (93)

In this convention, the factor of g disappears in the covariant derivative

Dµ = 1∂µ − iÃµ , (94)

and in the field strength
F̃µν = ∂µÃν − ∂νÃµ − i[Ãµ, Ãν ] (95)
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while the Yang-Mills Lagrangian develops the overall normalization out front

LYM = − 1

2g2
Tr
(
F̃ µνF̃µν

)
. (96)

We will stick with the earlier convention, especially when coupling different types of leptons
and quarks to the same SU(3)c × SU(2)I × U(1)Y Standard Model gauge fields.

Our action principle for Yang-Mills gauge theory has kinetic term

LYM = −1

2
Tr(F µνFµν) = −1

4
F µν
A FA

µν (97)

where the components of the field strengths are obtained from Fµν = FA
µνT

A,

FA
µν = ∂µA

A
ν − ∂νAAµ + gfBCAABµA

C
ν . (98)

How would we couple in matter? Imagine fields like quarks and leptons in a fundamental
(vector) representation of the gauge symmetry group. The gauge-invariant action is the one
where we use the minimal coupling recipe: replace partial derivatives by gauge-covariant
derivatives. The resulting Lagrangian for Yang-Mills coupled to matter is then

LYM = iψ̄D/ψ −mψ̄ψ − 1

2
Tr(F µνFµν) (99)

Note that the spinors in this expression have two kinds of indices: a spacetime spinor index
α (which we almost always suppress) and an internal gauge index A. Just as naturally, the
Yang-Mills fields have a spacetime index µ and an internal gauge index A.

The equations of motion following from the Yang-Mills action coupled to fundamental
matter are, as you should check explicitly,(

δAC∂µ + gfBCAAµB
)
FC
µν = −JAν , (100)

where
JµA = gψ̄TAψ (101)

Or, in even shorter-hand notation,

DµFµν = −Jν . (102)

The counterpart to the dynamical equation (100) for Aµ(x) is known as the Bianchi
identity. This is a mathematical identity morally similar to the two current-free Maxwell
equations. The Bianchi identity for Yang-Mills follows from the definition of F in terms of
A, ∑

cyclic

[Dρ, [Dµ, Dν ]] = 0 , (103)

or equivalently
DρFµν +DµFνρ +DνFρµ = 0 . (104)
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One final note. There is another term which we could have included in the Yang-Mills
Lagrangian which is also quadratic in the field strength,

L∗ =
θ∗
2
εµναβTr (FµνFαβ) . (105)

This can be shown to be a total derivative if the pseudoscalar θ∗ is a constant,

L∗ = θ∗∂α

[
εµναβTr

(
Aβ∂µAν −

2ig

3
AβAµAν

)]
. (106)

For now, we will ignore it. This is a great sin if we are interested in topological information
encoded in the gauge field. Right at the end of the course when we talk about anomalies,
we will reconnect to it briefly. If you are interested in learning about how gauge theory
interfaces with mathematical topics like homotopy, anomalies, instantons, etc. there are
many sources to learn about them. Some of the good introductory ones are Coleman’s
Aspects of Symmetry textbook and the classic review article by Eguchi, Gilkey and Hanson.
Serious students of theoretical high-energy physics should study them.

2.4 The Standard Model, chirality, and gauging isospin and hy-
percharge

The gauge group of the standard model is SU(3)c × SU(2)I × U(1)Y . The SU(3)c piece
represents colour, the SU(2)I isospin, and the U(1)Y hypercharge. The electromagnetic
U(1) with which we are familiar is not one of these groups; instead, it will turn out to be
a particular linear combination of the hypercharge and the diagonal component of isospin.
All gauge bosons start life as massless vector bosons, as do the fermions in this model. It
is the spontaneous symmetry breaking involving the scalar Higgs field which will give rise
to both vector boson masses (via SSB of gauge symmetry) and fermion masses (via Yukawa
couplings and SSB).

The Standard Model of particle physics is chiral. Left-handed and right-handed quarks
and leptons couple differently, in particular to gauge bosons. Recall that the projectors

P± ≡
1

2
(1± γ5) (107)

project Dirac fermions onto their right- and left-handed components respectively.
Based on years of experimental results, it was eventually realized that left-handed leptons

should be arranged as doublets of weak isospin

EL =

(
νL
eL

)
(108)

Note that the fermion doublet has weak isospin 1
2
. The upper component of the doublet

is taken to be the neutrino, which has I3 = +1
2
, while the charged lepton has I3 = −1

2
.

Right-handed leptons, on the other hand, are SU(2) singlets

(eR) (109)
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Note that there is no right-handed neutrino (or left-handed antineutrino). Furthermore, as
we will see shortly, neutrino masses are forbidden by SU(2)I×U(1)Y gauge invariance. This
is why high-energy theorists refer to neutrino masses (and mixings) as “beyond the Standard
Model” (sometimes abbreviated as BSM) physics.

What about quarks? They also have a similar structure, with

QL =

(
uL
dL

)
(110)

while the right-handed quark fields are again singlets of SU(2)

(uR) (dR) (111)

Accordingly, the free fermion Lagrangian for the lightest generation may be written, with
SU(2)I indices suppressed,

L = iēRγ · ∂eR + iēLγ · ∂eL + iν̄eγ · ∂νe+
+iūRγ · ∂uR + iūLγ · ∂uL + id̄Rγ · ∂dR + id̄Lγ · ∂dL

= iēRγ · ∂eR + iĒLγ · ∂EL + iūRγ · ∂uR + id̄Rγ · ∂dR + iQ̄Lγ · ∂QL (112)

Similarly for the muon and tau generations. Whatever form the hypercharge symmetry
transformation takes, we know these terms would respect global U(1) as each quark or
lepton is matched with an antiquark or antilepton. The details of how it works with local
gauge symmetry is our very next priority.

The above Lagrangian is invariant (so far) under a symmetry rotating the SU(2) doublet
around while leaving the singlet invariant. Promoting the SU(2)I to a gauge symmetry, we
have

EL
SU(2)I−→ e

1
2
iσiαi(x)EL

eR
SU(2)I−→ eR (113)

How are we going to find the U(1) of electromagnetism when all we have so far in the
way of U(1)s is hypercharge? Electric charge – for the left-handed fields at least – looks to
be related to weak isospin and hypercharge via

Q = I3 + Y (114)

In other words, charge is basically the sum of the only two diagonal generators in the Lie
algebra su(2)×u(1). Indeed, this will provide our definition of hypercharge in the following.
In particular,

Qν = 0 = +1
2

+ Y (EL)
Qe = −1 = −1

2
+ Y (EL) (115)

which is consistent provided that
Y (EL) = −1

2
(116)
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What about the right-handers? For the singlet eR, I3 = 0 so that

Y (eR) = −1 (117)

We also need to know the hypercharge assignment for the quarks. We have

Qu = 2
3

= +1
2

+ Y (QL)
Qd = −1

3
= −1

2
+ Y (QL) (118)

which is consistent provided that
Y (QL) = +1

6
(119)

How about the right-handed quarks? Since I3 = 0, the right-handed up has hypercharge

Y (uR) = +2
3

(120)

while the right-handed down has
Y (dR) = −1

3
(121)

In summary, the U(1)Y hypercharge generator acts as(
νe
eL

)
U(1)Y−→

(
e−

1
2
iβ(x) 0

0 e−
1
2
iβ(x)

)(
νe
eL

)
eR

U(1)Y−→ e−iβ(x)eR(
uL
dL

)
U(1)Y−→

(
e+

1
6
iβ(x) 0

0 e+
1
6
iβ(x)

)(
uL
dL

)
uR

U(1)Y−→ e+ 2
3
iβ(x)uR

dR
U(1)Y−→ e−

1
3
iβ(x)dR (122)

Note that, unlike weak isospin, this transformation acts on both left- and right-handed fields,
albeit with different charges (strengths of interaction).

In order to couple the gauge bosons of weak isospin and hypercharge to fermions, and to
the Higgs boson, we will need to construct covariant derivatives. For U(1), we introduce a
hypercharge gauge boson Xµ and write gauge-covariant derivatives as

D(Y )
µ = ∂µ − ig′Y Xµ (123)

For the weak isospin part, we also define the weak isospin gauge bosons

D(I)
µ = ∂µ − ig

(
σi

2

)
W i
µ (124)

These four gauge bosons, Xµ and W i
µ, start life massless.

Putting together what we learned about Yang-Mills gauge theory and the above data
on weak isospin and hypercharge for lepton and quark doublets and singlets, we obtain the
non-Higgs part of the electroweak sector of the Standard Model for one generation:

L1 + L1/2 = iēRγ
µ (∂µ + ig′Xµ) eR + iĒLγ

µ

(
∂µ +

1

2
ig′Xµ −

1

2
igσiW i

µ

)
EL
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+iūRγ
µ

(
∂µ − i

2

3
g′Xµ

)
uR + id̄Rγ

µ

(
∂µ + i

1

3
g′Xµ

)
dR

+iQ̄Lγ
µ

(
∂µ −

1

6
ig′Xµ −

1

2
igσiW i

µ

)
QL

−1

4

(
∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν

)2 − 1

4
(∂µXν − ∂νXµ)2 (125)

The sad thing about this Lagrangian for describing the real world is that it gets all the
masses wrong: they are all zero! Oops. Naively we might think that all is lost – putting
in explicit mass terms for any of the desired particles would break gauge symmetry (ouch).
This is where the magic of spontaneous symmetry breaking comes in. Shortly, we will see
that by coupling in a versatile Higgs field transforming as a doublet under SU(2)I with a
specific hypercharge under U(1)Y , we will be able to generate masses for (a) the W±, Z vector
bosons but not for the photon, and for (b) the leptons and quarks – without spoiling gauge
symmetry of the model. The fact that we can get away with recruiting only one Higgs field to
give all these particles masses is the group theoretic magic of the Glashow-Weinberg-Salam
model that contributed to winning its eponymous physicists the Nobel Prize.
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3 Spontaneous Symmetry Breaking

3.1 Goldstone’s Theorem

Sometimes the vacuum of a QFT does not respect the symmetries of the action. This is
called spontaneous symmetry breaking (SSB) and will turn out to be very important to a
full understanding of the Standard Model of Particle Physics. SSB only occurs in systems
with an infinite number of degrees of freedom. It is not possible in systems with a finite
number of degrees of freedom.

A simple example that will be familiar is to take an iron bar and heat it up. A blob of
molten Fe will have no overall magnetism. Now let the iron cool. The little Fe spins freeze
into small aligned domains (and alignment can be encouraged with another magnet). The
groundstate of the solid iron has all spins aligned, as it is a ferromagnet. When the iron
cooled into a groundstate, it could have picked any direction to point the spins. It picked one
randomly, and this broke rotational symmetry. Spontaneous symmetry breaking (SSB) like
this could happen only because there was a continuous infinity of possible angles from which
to choose. Another example would be a perfectly cylindrical pencil balanced vertically on
its very tip. It has rotational symmetry about the axis, but waiting for gravity and random
quantum fluctuations to do their thing will pick a direction – any direction, from 2π worth
of angle.

We could label that continuous infinity of vacua |θ〉 with angle(s) θ. Recasting the
statement that the vacuum broke the rotational symmetry mathematically, we can say that
|θ〉 moves under the action of a rotation generator:

Trot|θ〉 6= 0 (126)

SSB requires that the system under study be infinite. The reason is that, in order to know
the angle(s) θ precisely, we would have to sum over all partial waves – a continuous infinity
of them. It is the continuous infinity of possibilities that matters for spontaneous symmetry
breaking.

Consider a scalar field theory with a symmetry and Lagrangian given by

L = 1
2
(∂φ)2 − V (φ) (127)

Suppose L is invariant under U -transformations. Then

∆V =
∂V

∂φa
∆φa (128)

Therefore,

0 =
∂V

∂φa
[
i∆ωA(TA)abφ

b
]

(129)

Differentiating w.r.t. φc then gives

∂2V

∂φc∂φa
(TA)abφ

b +
∂V

∂φa
(TA)abδ

b
c = 0 (130)

This equation is the essence of what we are after.
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Let us now evaluate this equation at a minimum of the potential, denoted φ0 for conve-
nience. Because of the structure of the action, derivatives are disfavoured: field gradients
increase the energy. Similarly, ∂V/∂φa(φ=φ0)=0 on the equation of motion for the vacuum
configuration. Therefore, evaluating (130) at a minimum gives

〈 ∂2V

∂φc∂φa
〉(TA)ab〈φb〉 = 0 (131)

where 〈 〉 denotes the vacuum expectation value. Look at the first piece in this equation
carefully. You should recognize it: it is none other than the mass matrix for fields {φb} at
the minimum.

Let G denote the full symmetry group possessed by the action. Let H be the Little Group
of 〈φb〉: the symmetry transformations respected by the vacuum. Then G/H represents
physical states. If (TA) ∈ H ⊂ G, then (TA)ab〈φb〉 = 0 yielding an empty equation, because
〈φb〉 respects H-symmetry. But if TA 6∈ H, i.e. (TA)ab〈φb〉 6= 0, then it is termed a “broken
generator” [of symmetry] and by equation (130,131) there is a corresponding massless mode.
In other words, we have just found

Goldstone’s Theorem: in systems with spontaneous symmetry break-
ing, for every generator of the symmetry group broken by the vacuum
there is a corresponding massless field called the “Nambu-Goldstone
Boson”.

Physically, the most important thing about the Nambu-Goldstone Boson is that it is
massless, i.e., it has a dispersion relation E = |~p|. An example of a Nambu-Goldstone boson
is the phonon in fluids.

Technically, Goldstone’s Theorem is already a powerful one at tree level. What is even
more remarkable is that it holds solid even when quantum corrections are taken into
account. This is shown in significant detail in Peskin and Schroeder’s §11. The essence of
why this works is the formulation we employ: functional quantization. Symmetries are kept
manifest in the action, the generating functional, and the Green’s functions of the theory.
There is no need to break gauge symmetry, Lorentz symmetry, or whatever other symmetry
may be present, in order to perform quantization. The nontrivial work amounts to showing
that classical symmetries persist in the quantum action Γ[φ] when loop divergences are
regularized consistently. Peskin and Schroeder §11 contains a very nice full discussion of this
physics, starting with explicit loop calculations in the linear sigma model example in §11.2
and working up to a more abstract derivation in §11.6.

3.2 SSB with global symmetry

Consider a collection of real scalar fields {φi}, where i = 1, · · ·N . Suppose that the potential

for these fields has a global symmetry that makes it depend only on the magnitude of ~Φ,
but not on the direction. For example:

S[~Φ] =

∫
dDx

{
1
2
∂µφi∂µφ

i + 1
2
µ2φiφi − λ(φiφi)2

}
(132)
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as illustrated in the picture below. Note the positive quartic and negative quadratic coeffi-
cients in V (~Φ). This is not a typo; without the negative mass-squared term, SSB will not
occur in this model.

An important physics point here is that the negative mass-squared is not a violation of
causality – it simply indicates an instability, the endpoint of which is well-defined physically!
The type of tachyon which does cause heart-stopping arrhythmias in theoretical high-energy
physicists is the free tachyon, which just propagates and propagates, flouting causality all
the while.

A shorthand for the above Lagrangian is

L = 1
2
∂µ~Φ · ∂µ~Φ + 1

2
µ2|~Φ|2 − λ|~Φ|4 (133)

which is invariant under rotations of ~Φ. You should think of ~Φ here as a vector in field space.
The rotational symmetry acts as

~Φ→ R~Φ, i.e. φi → Ri
jφ

j (134)

Since φi ∈ R, the matrices R are orthogonal (R−1 = RT ).
How many generators are there? Our group transformations R and algebra generators

TA are connected via our friend the exponential map:

R = exp
(
i∆ωATA

)
(135)

In order for a rotation transformation R to be orthogonal, as you can quickly check, the
generators of o(N) must be antisymmetric:

(TA)ij = −(TA)ji (136)

Counting the number of independent components of a real antisymmetric matrix, we get
1
2
N(N−1). Naturally, this matches the number of rotations that we can make in N directions

of field space.
The lowest-energy configuration for our linear sigma model is the one with

~Φ(xµ) = ~Φ0 and
∂V

∂~Φ

∣∣∣∣
~Φ=~Φ0

= ~0 (137)
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Using the form of the action, we find quickly

(~Φ0)2 =
µ2

4λ
≡ v2 (138)

where v is short for VEV, vacuum expectation value. For definiteness, let us point the vev
vector along the Nth direction in field space. Next let us perform a field redefinition:

φi(x) =
{
πk(x), v + σ(x)

}
(139)

As you should check as an exercise, it follows straightforwardly that

L =
1

2
∂µπk∂µπ

k +
1

2
∂µσ∂µσ −

1

2
(2µ2)σ2

−2
√
λµσ3 − 2

√
λµπkπkσ − λσ4 − 2λσ2πkπk − λπkπkπjπj (140)

Notice that the πk fields are massless; the only massive field left after spontaneous symmetry
breaking is the σ field parametrizing field fluctuations over and above vacuum values. There
are cubic and quartic self-interactions for the σ, a quartic self-interaction for the πs, and a
cubic π−π−σ coupling as well as a quartic π−π−σ−σ coupling.

This exposition was for actions with “global” symmetry. In the case with gauge symmetry,
the story has some extra twists to it, which are rather splendid physically. They also form
the backbone of how the Higgs spontaneously breaks electroweak symmetry down to SU(2)×
U(1) at low energies.

3.3 SSB with local gauge symmetry

Consider a single complex scalar field Φ with charge (−e). Give it a wrong-sign mass term
and a quartic self-interaction in its Lagrangian, as in our linear sigma model example. Now
let us add a significant extra degree of difficulty by demanding not a global symmetry but
a local “gauge symmetry”. This requires that the Φ field be coupled to the Aµ field of
electromagnetism. Local phase transformations acting on the scalar field

Φ→ Φ′ = e−ieΛ(x)Φ (141)

are compensated by a shift in the gauge connection

Aµ → Aµ + ∂µΛ . (142)

Since you have met the U(1) gauge theory of electromagnetism before, you already know
that the simplest gauge-invariant action for Φ coupled to the gauge field is obtained via
“minimal coupling”:

∂µ → (1∂µ + ieAµ) (143)

This is required to ensure gauge invariance. The resulting Lagrangian is

L = ((∂µ − ieAµ)Φ∗) ((∂µ + ieAµ)Φ) + µ2Φ∗Φ− λ(Φ∗Φ)2 − 1
4
F µνFµν (144)
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In analogy to how our previous example panned out, let us anticipate SSB and write

Φ(x) = v +
1√
2

(φ1 + iφ2) (145)

Physically, this states that the vev would be v and the two real fields φ1,2 parametrize
fluctuations above the vacuum. In these variables,

L = −1
4
F µνFµν + e2v2AµAµ + 1

2
(∂µφ1)(∂µφ1) + 1

2
(∂µφ2)(∂µφ2)

−2λv2φ2
1 +
√

2eAµ∂µφ2 + (cubic terms) + (quartic terms) (146)

Something very important has just happened here: the photon got a mass! Note that the
fluctuating field φ1 has a mass term −2λv2φ2

1, while φ2 has no mass term and is derivatively
coupled. Physically, we say that the photon has eaten the would-be Goldstone
boson and become massive. φ2 does not have a direct physical interpretation as a field
whose quanta we can measure in a detector. It is, in fact, possible to gauge away φ2 entirely,
as we shall now see explicitly.

Since mathematically U(1) ' SO(2), our U(1) gauge transformation of Φ amounts to an
SO(2) rotation in the (φ1, φ2) plane. Using (141) (142) and (145) we write the components
of Φ in unitary gauge as a gauge-transformed vev in the φ2 direction. Infinitesimally,

φ′1 = φ1 − eΛφ2

φ′2 = eΛφ1 + φ2 +
√

2eΛv (147)

(You can of course very quickly find the finite version of this equation too: you should get
cosines and sines.) The critical observation is that we have (just) enough gauge freedom to
use Λ(x) to make φ2(x) identically zero everywhere. You should perform the exercise to see
this in very explicit terms yourself. Then, relabelling φ′1 to be just φ, we obtain

L = −1
4
F µνFµν−e2v2AµAµ+ 1

2
(∂µφ)(∂µφ)−2λv2φ2+(cubic terms)+(quartic terms) (148)

Our Lagrangian now contains only two fields: Aµ and φ. No trace of the eaten would-be
Goldstone boson remains in unitary gauge. This was of course done totally on purpose.

Let us now briefly make contact with the Higgs mechanism in a condensed matter physics
context. Consider a static configuration in our Abelian Higgs model above. The (negative
of the) Lagrangian would then reduce to

−Lstatic ≡ F = 1
2

∣∣∣(~∇− ie ~A)Φ
∣∣∣2 + (−µ2) |Φ|2 + λ |Φ∗Φ|2 + 1

4

∣∣∣~∇× ~A
∣∣∣2 (149)

(Note: in our signature convention, ∂µ and Aµ are decomposed as {∂µ} = {∂0, ~∇} while

{Aµ}={A0, ~A} so that {Aµ}={A0,− ~A}.) This quantity F is exactly the same as the Landau-
Ginzburg free energy in condensed matter physics, with the role of the wrong-sign mass
parameter played by

µ2 = v(Tc − T ) (150)

near the critical temperature Tc and with the role of Φ played by the macroscopic many-
particle wavefunction whose use is justified by BCS theory. When T > Tc, the minimum free
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energy is at |Φ| = 0. By contrast, when T < Tc, the mass term becomes “tachyonic”. We
can analyze the physics that ensues by focusing on the current that is conserved because of
U(1) gauge symmetry,

Jµ = ieΦ∗
←→
∂µΦ− 2e2|Φ|2Aµ . (151)

The spatial component of this is the usual 3-vector current ~j. When T < Tc and Φ varies only
a teeny bit across the physical system, the second term in the current is strongly dominant.
It gives

~j ' −e
2µ2

λ
~A ≡ −k2 ~A . (152)

This is the London equation. It shows that the resistance must be zero, as ~E = ~jR and
~E = −∂ ~A/∂t. It is also easy to derive the Meissner effect, viz. explusion of magnetic flux.

Starting from Ampère’s Law ~∇ × ~B = ~j and using the Bianchi identity ~∇ · ~B = 0 gives
∇2 ~B = +k2 ~B. So ~B has exponential falloff in position space, indicating that the magnetic
field only penetrates to a characteristic depth set by 1/k. Also, ∇2 ~A = +k2 ~A, which would
in relativistic form suggest a photon mass k. Again, this just the Higgs mechanism at work.

Our first way for symmetry of a complex scalar field theory to break spontaneously was
for it to rest on global symmetry. In that case, we had

• Goldstone mode
• Lagrangian had 2 massive scalars
• SSB gave 1 massless scalar + 1 massive scalar

In the case of spontaneous symmetry breaking for a charged scalar field coupled to an Abelian
gauge symmetry, we ended up with

• Higgs mode
• Lagrangian had 2 massive scalars and 1 massless gauge field
• SSB gave 1 massive gauge field + 1 massive scalar

Notice the remarkable thing that happened here – the photon ate the second scalar field
and became massive! Accordingly, the second scalar plays the role of the longitudinal po-
larization of the gauge boson. This is nowadays called the (Abelian) Higgs phenomenon,
although several important names should be credited as well, including Philip Anderson.
The J.J. Sakurai Prize for Theoretical Particle Physics in 2010 was awarded to {Robert
Brout & François Englert}, {Gerald Guralnik, Carl Hagen, & Tom Kibble}, and Peter Higgs
“for elucidation of the properties of spontaneous symmetry breaking in four-dimensional rel-
ativistic gauge theory and of the mechanism for the consistent generation of vector boson
masses”. Two of them, Englert and Higgs, won the Nobel Prize in Physics 2013 “for the
theoretical discovery of a mechanism that contributes to our understanding of the origin
of mass of subatomic particles, and which recently was confirmed through the discovery of
the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large
Hadron Collider”.

The gauge defined by equation (147) is known as the unitary gauge. It is very handy
for keeping track of only the physical degrees of freedom and unitarity. On the other hand,
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unfortunately in non-Abelian gauge theories the Green’s functions in unitary gauge do not
have a renormalizable perturbation expansion – although the S-matrix does. It is therefore
traditional to use the Rξ gauges, which are well-suited to this task, defined by GA = ∂µAAµ +
ξgvφA2 = 0, i.e.

Lgf = − 1

2ξ
GAGA = − 1

2ξ

(
∂µAAµ + ξgvφA2

)2
(153)

These gauges are a kind of interpolation between unitary gauge and a different class of gauge
where renormalizability at loop level is easier to track. We will be able to explain this after
we have introduced Fadeev-Popov ghosts.

We now turn to the case of a non-Abelian gauge symmetry, to illustrate the essential
physics needed to explain electroweak symmetry breaking mechanism in the Standard Model.
Consider the O(N) model, with N real scalar fields φI , where N = 3. Then

L = 1
2
DµφIDµφ

I + 1
2
µ2φIφI − λ(φIφI)2 − 1

4
F µνIF I

µν (154)

where

Dµφ
I = ∂µφ

I + gεJKIAJµφ
K

F I
µν = ∂µA

I
ν − ∂νAIµ + gεJKIAJµA

K
ν (155)

The reason why we are seeing εIJK appearing is that they are the structure constants of
O(3). These are exactly the same structure constants as for the group SO(3), for a good
reason. As you may wish to prove for yourself, orthogonal matrices O [over the reals] obey
det(O) = ±1. The part of the O(3) group connected to the identity matrix is SO(3); in
D = 3, the rest of O(3) is obtained via a parity transformation. Therefore, the structure
constants for o(3) are the same as for so(3). Note also that, at the level of the Lie algebras,
su(2) and so(3) are isomorphic. That is why we get εIJK for so(3) as well as for su(2).
At the level of the Lie groups, SU(2) and SO(3) differ. In fact, SU(2) is the double cover
of SO(3). Again, this is directly related to the fact that spin occurs for free fields only in
integer or odd-half-integer values (in units of ~).

The quartic potential with wrong-sign mass term has a minimum at

|φ0| =
µ

2
√
λ

(156)

As with our Abelian case, let us choose the vacuum to lie along

~φ0 = vê3 (157)

The physical fields are then: {φ1, φ2, φ3−v ≡ χ}. As you can check, straightforward algebra
gives

L =
1

2

[
(∂µφ1)(∂µφ

1) + (∂µφ2)(∂µφ
2) + (∂µχ)(∂µχ)

]
+ vg [(∂µφ1)Aµ2 − (∂µφ2)Aµ1 ]

+
1

2
v2g2

[
(A1µA1

µ) + (A2µA2
µ)
]
− 1

4
(∂µA

I
ν − ∂νAIµ)2

+4v2λχ2 + (cubic) + (quartic) (158)

30



Notice what has happened here: only χ got a mass amongst the scalars, while A1,2
µ have

become massive. In other words, there are two would-be Nambu-Goldstone bosons which
have been eaten.

In unitary gauge, we set

~φ(x) = ê3φ3(x) = ê3(v + χ) (159)

everywhere. There is just enough local O(3) gauge symmetry to accomplish this feat, at
every xµ. Then, in unitary gauge only,

3∑
I=1

(
DµφI

) (
Dµφ

I
)∣∣∣∣∣
U

= v2g2
(
A1
µA

1µ + A2
µA

µ2
)

+ (∂µχ) (∂µχ) (160)

and

L |U = −1

4

(
∂µAνI − ∂νAµI

) (
∂µA

I
ν − ∂νAIµ

)
− 1

2
v2g2

(
Aµ1A1

µ + Aµ2A2
µ

)
+

1

2
∂µχ∂µχ− 4v2λχ2 + (cubic) + (quartic) (161)

We should now pause to check that we have a proper accounting for the degrees of
freedom of this O(3) linear sigma model in both the Higgs and Goldstone modes. Before
any SSB, of course, we would have had 3 massive scalars and 3 massless vectors, giving
(3× 1) + (3× 2) = 9 physical degrees of freedom. For SSB modes in the O(3) linear sigma
model, then,

Higgs

• 1 massive scalar (χ)
• 2 massive vectors (A1

µ, A
2
µ)

• 1 massless vector (A3
µ)

• Total: (1× 1) + (2× 3) + (2) = 9

Goldstone

• 1 massive scalar
• 2 massless scalars
• 3 massless vectors
• Total: (1× 1) + (2× 1) + (3× 2) = 9

The interesting thing is that this relatively innocuous looking O(3) model possesses all
the important features of a non-Abelian gauge field theory coupled to a a Higgs field, giving
rise to SSB, Goldstone fields getting eaten and fattening their respective gauge bosons in a
manner consistent with local gauge invariance. Here we even had one remaning unbroken
generator, so that one scalar remained massive and the A3

µ component of the non-Abelian
gauge field stayed massless. This feature is mission-critical, as the photon is known to be
massless to an extremely high degree of experimental accuracy.

3.4 The Higgs boson

One of the main reasons for introducing the Higgs is to produce massive vector bosons in a
manner consistent with gauge invariance. This is achieved via spontaneous breaking of the
SU(2)I × U(1)Y , leaving the electromagnetic gauge boson massless while giving masses to
W±, Z. Another equally important feature is that the Higgs gives mass to fermions in the
Standard Model, quarks and leptons included.
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For a fermion mass term, we need something that couples left- and right-handed fermion
fields. A plain old ordinary mass term for the fermions would be forbidden by SU(2)I×U(1)Y
gauge symmetry, so we need another way forward.

Let us first discuss the case of the leptons. Since EL is an SU(2)I doublet while eR is a
singlet, we will need a [conjugate] SU(2)I doublet representation in order to have any hope
of making an SU(2)I-invariant Lagrangian from EL, eR . i.e.,

I(Φ) = +1
2
. (162)

Indeed, a Yukawa coupling between the Higgs scalar and the electron-generation fermions of
the form

LYuk ⊃ −λe
(
ĒLΦeR + h.c.

)
(163)

would achieve the desired mass term structure – provided that Φ were to develop a vacuum
expectation value through spontaneous symmetry breaking. This term respects SU(2)I as
written. We also need to make sure that our Lagrangian for fermion-Higgs interactions is
U(1)Y invariant. Left- and right-handed fermions differ in hypercharge: Y (ĒL) = +1/2,
Y (eR) = −1. Accordingly, the Higgs must transform in the following way to respect hyper-
charge gauge symmetry:

Y (Φ) = +
1

2
. (164)

Because Q = I3 + Y , the upper component of the Higgs doublet will have charge Q = +1
and the lower component will have Q = 0.

Now we must check that these charge assignments also work for the quark sector while
continuing to respect SU(2)I × U(1)Y gauge invariance! Let us see if we can write down
a consistent Higgs-quark Yukawa coupling. As it happens, an accident of group theory for
SU(2)I lets us get away with it. For the down-type quarks, we can write

LYuk ⊃ −λdQ̄LΦdR + h.c. . (165)

In order for this coupling to respect U(1)Y as well as SU(2)I , we need for the total hyper-
charge of this Yukawa term to vanish. We know that Y (QL) = +1/6 and that Y (dR) = −1/3,
so that indeed the Higgs with Y (Φ) = +1/2 will do the trick. For the up-type quarks, we
have to try something different to respect hypercharge and isospin invariance. This time, let
us write

LYuk ⊃ −λuQ̄LΦ̃uR + h.c. , (166)

where the putative doublet field Φ̃ must have the opposite hypercharge to Φ, because Y (uR) =
+2/3 and Y (Q̄L) = −1/6 and so Y (Φ̃) = −1/2. The fortunate group theoretic accident of
SU(2)I is that for an isospin-half doublet, we can make another isospin-half doublet with
the opposite charge from the original simply by recruiting

Φ̃ = i
σ2

2
Φ∗ . (167)

You can check for yourself that this works or look it up in a group theory for physicists
textbook. This trick does not work for other gauge groups. It is quite remarkable that we
only had to use one Higgs field here, in order to write down Yukawa couplings that via
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SSB would give masses to the electron-type lepton and both up-type and down-type quarks
but not to the neutrino. In a more general theory, for example in SUSY QFTs, it will be
necessary to have at least two Higgses, one up-type and one down-type.

In sum, the combined SU(2)I × U(1)Y invariance tells us to put the Higgs in an SU(2)I
doublet; its upper component is the positively charged Higgs while its lower component is
the neutral Higgs:

Φ =

(
φ+

φ0

)
(168)

Since this is a complex scalar doublet, it has four real degrees of freedom.
Since we have already constructed gauge-covariant derivatives in general, and worked out

the isospin and hypercharge assignments of the Higgs in particular, we can now write down
a Lagrangian for the Higgs which exhibits SSB and the right kinds of gauge invariance:

L0 = (DµΦ)† (DµΦ) +
1

2
µ2Φ†Φ− 1

4
λ
(
Φ†Φ

)2

+
(
−λeĒLΦeR − λuQ̄LΦ̃uR − λdQ̄LΦdR + h.c.

)
(169)

where

DµΦ =

(
∂µ −

1

2
igσiW i

µ −
1

2
g′Xµ

)
Φ (170)

The total Lagrangian will then be

L = L1 + L1/2 + L0 (171)

There are some important caveats to bear in mind. Our one-generation model, as written
above, fails to capture some important features. In particular

• No CP violation can occur in this model. CP violation requires three generations – see
e.g. the citation for the 2008 Nobel Prize. Other good resources for grokking this are
the particle theory textbook by Cheng and Li and §20 in Peskin and Schroeder.
• Gauge eigenstates for fermions (which transform neatly under isospin and hypercharge

gauge transformations) are not necessarily mass eigenstates. In other words, the
fermion fields typically get a mass matrix from SSB. This complicates the physics
significantly, in an interesting way.

3.5 Vector boson masses

The self-interaction we chose for the Higgs included the signature ‘wrong-sign’ mass term,
to trigger spontaneous symmetry breaking.

We pick the vev for the Higgs, spontaneously breaking gauge symmetry, to be aligned as
follows:

Φ(x)

∣∣∣∣
0

=

(
0
η

)
(172)

where
η ≡ µ√

λ
(173)
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We now impose unitary gauge, in which the charged Higgs is set to zero using local gauge
symmetry:

Φ(x) =

(
0

η + 1√
2
σ(x)

)
(174)

To discern which combination of gauge bosons remains massless in response to SSB, we need
to look harder at the structure in the SU(2) sector. Note that since Wµ = W i

µ

(
1
2
σi
)

we
have, in SU(2) matrix space,

Wµ =
1

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
(175)

Therefore, as a matrix, the covariant derivative takes the form

(Dµ) = 1∂µ − ig′Y Xµ −
1

2
ig

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
(176)

This form would be different if we were working with either a different symmetry group or
a different matter representation.

Then our Higgs has gauge-covariant derivative

DµΦ = −1

2
i

(
gη(W 1

µ − iW 2
µ) + 1√

2
gσ(W 1

µ − iW 2
µ)√

2i(∂σ) + η(−gW 3
µ + g′Xµ) + 1√

2
σ(−gW 3

µ + iXµ)

)
(177)

It is therefore straightforward to show, as you should work out explicitly, that

DµΦ†DµΦ =
1

2
∂µσ∂µσ+

1

4
g2η2

(
(W 1

µ)2 + (W 2
µ)2
)

+
1

4
η2
(
gW 3

µ − g′Xµ

)2
+ (cubic) + (quartic)

(178)
We see that three vector bosons out of the original four have obtained a mass, while one has
not. Specifically, the massive guys are two charged W -bosons

W±
µ ≡ 1√

2
(W 1

µ ± iW 2
µ) (179)

and one neutral boson called the Z:

Zµ ≡
(gW 3

µ − g′Xµ)√
g2 + (g′)2)

≡ cos θW W 3
µ − sin θW Xµ (180)

By construction, this field is orthogonal to

Aµ ≡
(g′W 3

µ + gXµ)√
g2 + (g′)2

≡ sin θWW
3
µ + cos θWXµ (181)

The Weinberg angle is given by

tan θW =
g′

g
(182)

and so

m2
W =

1

2
g2η2 =

1

2
g2µ

2

λ
(183)
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and

m2
Z =

m2
W

cos2 θW
> m2

W (184)

Working through the algebra gives, for the fermion-gauge interaction Lagrangian,

L ⊃ g sin θW
[
(−1)ēγµe+ (2

3
)ūγµu+ (−1

3
)d̄γµd

]
Aµ

+
g

cos θW

[
+ν̄eγ

µ(1
2
)νe + ēRγ

µ(sin2 θW )eR + ūRγ
µ(−2

3
sin2 θW )uR + d̄Rγ

µ(+1
3

sin2 θW )dR

+ēLγ
µ(−1

2
+ sin2 θW )eL + ūLγ

µ(+1
2
− 2

3
sin2 θW )uL + d̄Lγ

µ(−1
2

+ 1
3

sin2 θW )dL
]
Zµ

+
g√
2

[
(ν̄eγ

µeL + ūLγ
µdL)W+

µ + h.c.
]

(185)

The vector boson Aµ couples only to electrons, not to neutrinos. This is of course exactly
what we wanted: electrons are charged while neutrinos are electrically neutral. Even the
form of the “electromagnetic current”

JEM
µ = (−1)ēγµe+ (2

3
)ūγµu− (1

3
)d̄γµd (186)

is correct, if we identify
e = g sin θW (187)

The neutral Zµ boson couples to the “neutral current”, with strength g/ cos θW

Jn
µ = ν̄eγµ(1

2
)νe + ēRγµ(sin2 θW )eR + ūRγµ(−2

3
sin2 θW )uR + d̄Rγµ(+1

3
sin2 θW )dR

+ ēLγµ(−1
2

+ sin2 θW )eL + ūLγµ(+1
2
− 2

3
sin2 θW )uL + d̄Lγµ(−1

2
+ 1

3
sin2 θW )dL (188)

This talks to neutrinos, electrons and quarks. It is not left-right symmetric.
The “charged current” for the W+

µ , coupling to it with strength g/
√

2 is

Jc
µ = (ν̄eγµeL + ūLγµdL) (189)

and similarly for its Hermitean conjugate for the W−
µ . This vertex is relevant for e.g. beta

decay.

3.6 Fermion masses

Recall that we started out with a Lagrangian with no explicit fermion masses, in order to
be consistent with SU(2) × U(1) gauge invariance. We could however write down a gauge-
invariant coupling between the Higgs and the fermions that took the form of a Yukawa
coupling

LYuk ⊃ −f
(
ĒLΦeR + ēRΦ†EL

)
+ (quarks)

= −λe
(
ν̄eeRφ

+ + ēLeRφ
0 + ēRνe(φ

+)† + ēReL(φ0)†
)

+ (quarks) (190)

In unitary gauge, when SSB occurs, this single-generation Lagrangian collapses to

LYuk ⊃ −λeη (ēLeR + ēReL) + (cubic) + (quarks) (191)
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One very important consequence of this Standard Model – just as true for three generations
as for one – is that neutrino masses are identically zero.

m2
ν ≡ 0 (192)

There is simply no way to create neutrino masses consistent with SU(2) × U(1) gauge
invariance. Accordingly, all neutrinos are of left-handed chirality while all antineutrinos are
right-handed.

The electrons and quarks, on the other hand, have masses governed by the strength of
the Yukawa couplings λe,u,d as well as the vev of the Higgs, for instance

me = (λe)
µ√
λ

(193)

This expression for the fermion mass is all well and good, but how does it relate to
quantities that we can actually measure in the laboratory? In order to tease that apart, it
helps to recall

mW =
1√
2
g
µ√
λ

(194)

Therefore, to find the ratio of the electron mass to the W mass, we need to focus on relating
the strength of the Yukawa coupling λe to the SU(2) gauge coupling g.

The charged current coupling to W± is simpler in structure than the neutral current, so
let us focus there. We have g/

√
2 for either the ν̄e−eL−W+ vertex or for the ūL−dL−W+

vertex, and the same goes for their Hermitean conjugates.

Consider the structure of the propagator for the massive gauge bosons. At low momen-
tum, the detailed momentum dependence in that propagator, whatever it is in whichever
gauge, can be expected to collapse into the simple expression

lim
k2→0

∆
(W )
αβ (k) =

iηαβ
m2
W

(195)

Combined with this propagator, the Yukawa couplings would give rise to an effective four-
Fermi interaction at low energy of the form

LW ⊃ −
g2

2
J cµ(quark)†

ηµν

m2
W

J cν(lepton) (196)

where

J cµ(lepton) = ν̄eγµeL
J cµ(quark) = d̄LγµuL (197)

36



The coefficient of the effective four-Fermi interaction was historically written as the Fermi
decay constant of Enrico Fermi’s attempt to explain the weak interactions. At tree level,

GF√
2

=
g2

8m2
W

(198)

Very similar logic can be used to obtain the four-fermi vertex for muon decay (into an electron
and some neutrinos) as well.

The experimentally measured value is

GF '
10−5

m2
proton

(199)

From this, we can conclude (modulo renormalization!) that the SU(2) coupling is

g2 ' 4
√

2m2
WGF '

10−5m2
W

m2
proton

(200)

This is a number less than unity, but is not especially weak. It is really the size of the
W boson mass that makes weak interactions at low energy look so weak, not so much the
weakness of g2 itself.

Neutral current scattering mediated by the Zµ can give rise to neutrino-electron (or mu,
or tau) scattering which is of similar order as the charged current scattering process as long
as the Weinberg angle is not too small. Working along similar lines to our method above, we
can actually find the effective four-fermi interaction Lagrangian for both W and Z exchange
at low energy. As you should check for your own satisfaction, this yields

lim
k2→0

(∆LW + ∆LZ) =
4GF√

2

[
(J1
µ)2 + (J2

µ)2 + (J3
µ − sin2 θWJ

EM
µ )2

]
(201)

This expression, as Peskin and Schoeder explicitly point out, becomes manifestly invariant
under an unbroken global SU(2) symmetry in the limit that g′ → 0 or sin2 θW → 0. This
custodial symmetry demands that mZ = mW and has some interesting physical consequences
that we do not have time to discuss here. For more details, see Chapter 20 of Peskin and
Schroeder. Note: any theory whose Lagrangian possesses a global SU(2) symmetry gives
rise to neutral current processes; you only get the intermediate vector bosons arising if the
symmetry is gauged.

The Fermi theory of beta decay was a decent low-energy effective theory. However, it
has one inexcusable drawback for anyone wanting to discover the deep structure of quark
and lepton interactions: it is non-renormalizable. Like Einstein’s theory of GR, the quan-
tum Fermi theory has ultraviolet infinities that cannot be mathematically tamed and are
not physically reasonable. This is a big reason why we all teach the Standard Model in
terms of spontaneously broken SU(2)×U(1) gauge symmetry instead – this gauge theory is
renormalizable.

Is the Glashow-Weinberg-Salam model (for which they shared the Nobel Prize) a con-
sistent quantum theory? One topic which we may have time to develop in the final week
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of this course is the topic of anomalies. Anomalies arise from loop diagrams generically,
and may spoil gauge invariance by breaking it at quantum loop level. In a beautiful twist
of group theory, the charge assignments we have made and the choice of gauge group give
rise to cancellation of all anomalies - provided that our chiral fermions appear in complete
doublet generations. This is one way that the existence of both the charm and top quark
were predicted: physics was known to be inconsistent for the existing odd number of quarks.

So how should we think about this lovely construction we have just spent an entire week
discussing, in the context of “Unification”? In the history of the universe since the Big Bang
(or Big Brane Crash, or whatever it was!), the ambient temperature has plummeted as our
universe underwent great expansion. CMBR photons today sit in the microwave, but were a
great deal hotter during the very early universe. Thermal fluctuations of a typical quantum
field in equilibrium are driven by the ambient temperature. At high-T , the |Φ|4 part of
the Higgs potential will dominate, and the little bump of a local minimum at Φ = 0 will
hardly be noticed. All four vector bosons of SU(2) × U(1) are massless in this phase. At
lower temperatures, however, the average thermal energy for any field mode gets drastically
reduced, and so the topography of the Mexican Hat potential will become very important.
Once the average thermal energy drops below the height of the bump, SSB occurs. We see
that at low energy W±, Z become massive – as do all the quarks and leptons save neutrinos
– while the photon stays exactly massless.

3.7 Multiple generations and CP violation

Before we move on to Feynman path integrals, we can give a quick outline of why CP
violation in the Standard Model requires three generations.

Consider 3 generations of quarks and leptons as fundamental vectors in flavour space:

(e′i) =

 e′

µ′

τ ′

 (ν ′i) =

 ν ′e
ν ′µ
ν ′τ

 (p′i) =

 u′

c′

t′

 (n′i) =

 d′

s′

b′

 ,

where i = 1 . . . 3. These can be combined into SU(2) isospin doublets in gauge space as

L′iL =

(
ν ′i
e′i

)
L

Q′iL =

(
p′i
n′i

)
L

.

Such gauge eigenstates transform nicely under weak isospin and hypercharge.
Starting from minimal coupling and known isospins and hypercharges, we can show that

the interaction Lagrangian between the above fermions and the vector bosons {WA, X} is

Lmin = L̄′iLi

(
∂/ − ig

2
σAWA/ + i

g′

2
X/

)
L′iL + ē′iRi (∂/+ ig′X/ ) e′iR+

+Q̄′iLi

(
∂/− ig

2
σAWA/ − ig

′

6
X/

)
Q′iL + p̄′iRi

(
∂/− 2i

3
g′X/

)
p′iR + n̄′iRi

(
∂/+

i

3
g′X/

)
n′iR .

Using symmetry arguments exactly patterned on the one-generation case we covered
earlier, we can also see why Yukawa couplings for the multi-generation case must take the
form

LYuk = f
[e]
ij L̄

′
iL Φ e′jR + f

[u]
ij Q̄

′
iL Φ̃ p′jR + f

[d]
ij Q̄

′
iL Φn′jR ,
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where f
[e,u,d]
ij are Yukawa couplings for leptons, up-type quarks and down-type quarks, and

Φ̃ =
i

2
σ2Φ∗ .

Recall that this Φ̃ is built entirely out of Φ; it is not a new Lagrangian field.
For the rest of this discussion we will focus on the quark sector only, for simplicity.
Now imagine SSB happening. There will generically be a mass matrix M for quarks, as

you can see by looking at the form of LYuk. There is no physical reason to expect the quark
mass matrix to be diagonal - or even symmetric or Hermitean. This mass matrix M can be
diagonalized by a biunitary transformation

S†MT = Md ,

where Md is diagonal and S, T are unitary. Accordingly, we can show that for a quark gauge
eigenstate ψ′ there is a ψ which is a quark mass eigenstate:

ψ̄′LMψ′R = ψ̄LMdψR ,

where
ψ′L = SψL and ψ′R = TψR .

Suppose that we have n generations of quarks, each of which is an isospin doublet. A
general n × n unitary matrix U has n2 real components, and this can be characterized in
terms of n(n − 1)/2 real rotation angles and n(n + 1)/2 complex phases. However, not all
these phases turn out to be physically observable. Some of them can be eliminated by quark
field redefinitions! In particular, if we note the fact that only charged weak currents are
nondiagonal in quark flavours,

LCC =
g√
2

(ū, c̄, t̄)L γ
µ U

 d
s
b


L

W+
µ + h.c.

we can see that changing the phase of only one row or column of a unitary matrix appears
to not change any physical observables. There are 2n such phases. But we actually double-
counted one: pulling out a general phase out front of the whole unitary matrix does not
change physical observables either. So there are actually only 2n − 1 unphysical phases.
Ergo, the final number of physically observable phases is

1

2
n(n+ 1)− (2n− 1) =

1

2
(n− 1)(n− 2) . (202)

We therefore need at least 3 generations for CP violation: n = 1 or n = 2 won’t cut it.
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4 The Feynman Path Integral

4.1 FPI for non-relativistic point particles

Note: the discussion in this subsection is based on §9 of Peskin and Schroeder.
Recall from QFT1 that if we wanted to compute the quantum mechanical amplitude for

a particle to go from xa to xb in a time T , we would write down the expression

U(xa, xb;T ) = 〈xb|e−iHT |xa〉 . (203)

where H is the time evolution operator. Richard Feynman, a truly great theorist and ex-
perimentalist, proposed that we should think about quantum mechanics as a sum over all
possible paths. Specifically, Feynman proposed that

U(xa, xb;T ) =
∑

all paths

exp (i[phase]) , (204)

where the phase is proportional to the action S. This is motivated because classical paths
have stationary phase and stationary action,

δ

δx
S

∣∣∣∣
x=xcl

= 0 . (205)
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The role of the proportionality constant between phase and action is played, as you might
expect from dimensional analysis, by ~. In other words, Feynman proposed that

〈xb, xa;T 〉 =

∫
Dx(t) exp

(
iS[x(t)]

~

)
, (206)

for very general systems.
To see how the above functional integral works, in particular to understand Dx(t), it

is instructive to figure out the measure by discretizing. This discretization trick is extremely
useful in quantum field theory in general, and in fact all of lattice gauge theory is based on
it. Although, when a physical theory is properly understood, the same result must of course
be obtained by any other regularization method.

Consider time evolution from t = 0 to t = T in steps of ε, approximating the paths by a
sequence of straight lines. Since we are working in the non-relativistic approximation for a
point particle, we have for the action

S =

∫ T

0

dt

(
1

2
mẋ2 − V (x)

)
→
∑
k

[
m

2ε
(xk+1 − xk)2 − εV

(
xk+1 + xk

2

)]
. (207)

Anticipating a future need, we allow each segment to have its own normalization factor in
the definition of the measure, and write∫

Dx(t) =
1

C(ε)

∫
dx1

C(ε)

∫
dx2

C(ε)
· · ·
∫
dxN−1

C(ε)

=
1

C(ε)

∏
k

∫ +∞

−∞

dxk
C(ε)

. (208)

Note that one factor of C(ε) was included for each of the N time slices. Our task here is to
find, in the continuum limit ε→ 0, the factors C(ε) and the differential equation obeyed by
our friend U .
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Consider the difference between the penultimate and final steps in the sequence x1, x2, · · ·xN .
For this step we have

U(xa, xb;T ) =

∫ +∞

−∞

dy

C(ε)
exp

(
i

~

[
m(xb − y)2

2ε
− i

~
εV (

xb + y

2
)

])
× U(xa, y;T − ε) , (209)

where the right factor of U(xa, y;T − ε) incorporates all the data from the previous slices.
Now notice how this integrand behaves in the limit ε→ 0. First, note that the potential

term varies weakly with ε, as V (x) is well behaved. Secondly, the kinetic term oscillates
wildly in the phase eiS/~, which makes the energy cost prohibitive unless y is kept really
close to xb. Therefore, expanding in a Taylor series, we have

U(xa, xb;T ) =

∫ +∞

−∞

dy

C(ε)
exp

(
i

~
m

2ε
(xb − y)2

)
×
[
1− iε

~
V (xb) + · · ·

]
×

×
[
1 + (y − xb)

∂

∂xb
+

1

2
(y − xb)2 ∂

2

∂x2
b

+ · · ·
]
× U(xa, xb;T − ε) . (210)

Because of the Taylor expansion, the integral over y reduces to a simple Gaussian. Recalling
that ∫ +∞

−∞
dy e−by

2

=

√
π

b
,

∫ +∞

−∞
dy y2e−by

2

=
1

2b

√
π

b
, (211)

we have that

U(xa, xb;T ) =

(
1

C

√
ε 2π~
−im

){
1− iε

~
V (xb) +

ie~
2m

∂2

∂x2
b

+ O(ε)2

}
× U(xa, xb;T − ε) . (212)

This equation does not make any sense as ε→ 0, unless

C(ε) =

√
ε 2π~
−im

. (213)

This requirement then implies the following differential equation for U in the continuum
limit:

i~
∂

∂T
U(xa, xb;T ) =

{
− ~2

2m

∂2

∂x2
b

+ V (xb)

}
U(xa, xb;T ) , (214)

which is our old friend the Schrödinger equation!
One more consistency check is in order. We know from our adventures with canonical

quantization that
lim
T→0
〈xb|e−iHT |xa〉 = δ(xa − xb) . (215)

Compare this to our discretized equation,√
−im
2π~ε

exp

(
i

~
m

2
(xb − xa)2 + O(ε)

)
. (216)

The discretized quantity, in the continuum limit ε → 0, is exactly the same mathematical
beast as the delta function. We just regularized it in such a way that it is the limit of a
Gaussian in the discretized picture.
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This is excellent – our Feynman Path Integral story and canonical quantization give
the same result. Fortunately, this agreement between functional and canonical quantization
methods is not limited to a simple non-relativistic point particle. In all QFTs understood
well enough to analyze, this equivalence remains solid. The reason we are switching you to
the path integral is that beyond spin-half it is much easier to calculate with – especially if
you have any meaningful symmetry in the picture such as gauge symmetry.

How about the extension to any system with (qi, pj)? The analysis is very similar, except
in a few places. First, a useful identity is 1 =

(∏
i dq

k
i

)
|qk〉〈qk|, where k indexes timesteps

and i indexes coordinates qi. Second, as Peskin and Schroeder explain on p.281 of their
textbook, for general operator ps and qs it is ambiguous as to how to define matrix elements
we need. For brevity’s sake, it is assumed that the Hamiltonian is Weyl ordered, to remove
position/momentum ordering ambiguities. The next step in the story involves expanding
in momentum eigenstates and position/momentum wavefunction overlaps. For the cases in
which the Hamiltonian is a function of only the canonical momenta, the algebra goes through
straightforwardly. More details may be found in Peskin and Schroeder. After the algebraic
dust settles, the result in the continuum limit is

U(q0, qN ;T ) =

{∏
i

∫
dqidpi
2π~

}
exp

(
i

~
S

)
. (217)

Of course, the measure appearing in this continuum expression is none other than the usual
measure on phase space. This is what we will now generalize to fields.

We can now take this formula derived for dynamical coordinates qa(t) and canonical
momenta pb(t) and realize that the only difference for quantum fields – animals that are
functions of relativistic coordinates xµ – will be to replace

t −→ xµ

qi(t) −→ ΦA(xµ) , (218)

where A is a collection of spacetime and/or internal indices on the quantum field.

4.2 Functional quantization for scalar fields

The functional quantization method, as compared to the canonical approach of expanding
field operators in Fourier expansions of creation and annihilation operators, has a number
of distinct advantages. One of the most important is that the Feynman Path Integral (FPI)
inherently preserves symmetries manifest in the action such as gauge symmetry and Lorentz
symmetry – something the canonical approach cannot do.

Let us now focus on a specific example of how to do field quantization in the functional
approach. We pick the spin zero scalar field to begin with, as it lets us see the physics
without getting distracted by spinors or gauge invariance. We choose a minimal kinetic term
and write

L = 1
2
∂µφ∂µφ− 1

2
m2φ2 − V (φ) . (219)

Recall that this gave rise to a Feynman propagator

i

(k2 −m2 + iε)
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To see how the Lagrangian arises in the phase for scalar field theory, we need to work out
the transition amplitude. To find e−iHT/~, we need the Hamiltonian density, which is

H = Π · Φ̇−L

= 1
2
Π2 + 1

2
|∇φ|2 + 1

2
m2φ2 + V (φ) , (220)

where Π is the field canonical momentum ∂L /∂φ̇. Then

〈φb(x)|e−iHT/~|φa(x)〉 =

∫
DφDΠ exp

(
i

~

∫ T

0

dt

∫
ddx×

×
[
Π · φ̇− 1

2
Π2 − 1

2
|∇φ|2 − 1

2
m2φ2 − V (φ)

])
. (221)

Since this is an integral at most quadratic in Π, we can complete the square and do the
integral analytically: it is just a Gaussian. (If there’s anything a ~ physicist can do, it’s
Gaussian integrals!) The result just gives a normalization constant out front, allowing us to
define

〈φb(x)|e−iHT/~|φa(x)〉 =

∫
Dφ exp

(
i

~

∫ T

0

dt

∫
ddxL [φ(xµ)]

)
. (222)

N.B.: Morally, you should think of the Hamiltonian as being defined via this relationship.
It is the Feynman path integral – the right hand side of this equation – that we will consider
fundamental to Quantum Field Theory. FPI technology is extremely powerful and will
allow us to quantize fields of spin one and greater with a lot more ease than with canonical
apparatus.

Physicists studying QFTs always want to know about how field operators correlate
amongst one another. The most basic correlator to study is the two-point correlation
function, and so we now set up the procedure for finding it.

Suppose we consider time to run from −T to +T , and that t1, t2 are two intermediate
times in the range [−T, T ]. Suppose further that we define our scalar field to take endpoint
values

φ(−T, x) = φa(x)

φ(+T, x) = φb(x) , (223)

and let the interior values at t1, t2 be defined as

φ(t1, x) = φ1(x)

φ(t2, x) = φ2(x) . (224)

Consider the following quantity

Ξ :=

∫
Dφ(x) {φ(x1)φ(x2)} exp

(
i

∫ +T

−T
L (φ)

)
. (225)

We will use this as a starting point and then take a specific type of large-T limit in order to
extract the two-point correlation function.
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First, let us split the measure as follows:∫
Dφ(x) =

∫
Dφ1(x)Dφ2(x)

∫
φ(t1, x) = φ1(x)
φ(t2, x) = φ2(x)

Dφ(x) . (226)

Now let us suppose that t1 < t2. Then

Ξt1<t2 =

∫
Dφ1(x)Dφ2(x) {φ1(x1)φ2(x2)} ×

×〈φb|e−iH(T−t2)/~|φ2〉〈φ2|e−iH(t2−t1)/~|φ1〉〈φ1|e−iH(t1+T )/~|φa〉 . (227)

To simplify this we need only recall that, for a quantum field φ, φ(x) is the eigenvalue
obtained when the Schrödinger picture field operator hits a field state:

φ̂S|φ1〉 = φ1(x1)|φ1〉 . (228)

Also, recall the completeness relation for the quantum field φ:∫
Dφ |φ〉〈φ| = 1 . (229)

Using that fact, we get

Ξt1<t2 = 〈φb|e−iH(T−t2)/~φ̂S(x2)e−iH(t2−t1)/~φ̂S(x1)e−iH(t1+T )/~|φa〉 . (230)

Notice something interesting: the quantity eiHtφ̂S(x)e−iHt/~ is just the Heisenberg picture
field operator φ̂H(x). Therefore,

Ξt1<t2 = 〈φb|e−iHT/~φH(t2, x2)φH(t1, x1)e−iHT/~|φa〉 . (231)

The expression for t2 < t1 is identical, except for a shuffling of indices.
Our final trick is to strip off the T -dependence in order to get an unsullied two-point

correlation function. Assuming that our states have any overlap with the vacuum |Ω〉, we
take a specific kind of long-time limit:

T →∞(1− iε) . (232)

The reason for introducing the iε is mathematical: to ensure convergence. Physically, what
this long-time limit does is project the vacuum |Ω〉 from |φa〉 and project 〈Ω| from 〈φa|.
To see how this works, we simply decompose |φa〉 into an energy eigenbasis |n〉 of Ĥ, and
consider how it behaves in the long-time limit specified above. We find

e−iHT/~|φa〉 =
∑
n

e−iEnt/~|n〉〈n|φa〉

−→
T →∞(1− iε) 〈Ω|φa〉e−iE0·∞·(1−iε)/~|Ω〉 .

It is easy to see from this expression why we chose the limit T →∞(1−iε): only for this sign
choice does the ε term give a damping and hence a physically reasonable regularization. It
corresponds physically to using the Feynman propagator (half-advanced half-retarded) with
the under-and-over contour as depicted below.
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To make sense of the infinitely oscillating phase part, we simply compute a ratio as
follows:

〈Ω|T {φH(x1)φH(x2)} |Ω〉 = lim
T→∞(1−iε)

∫
Dφ · φ(x1)φ(x2) · exp

(
i
∫ +T

−T dDxL
)

∫
Dφ exp

(
i
∫ +T

−T dDxL
) . (233)

This final expression is a very important formula, to which we will return repeatedly. As
you can see for yourself, it easily generalizes to higher correlation functions.

4.3 Doing the FPI for a free massive scalar field via spacetime
discretization

In a general case, the FPI cannot be done exactly. Most of the time, and for all of this
course, it has to be approached perturbatively. For clarity we now show explicitly how to
compute the path integral for a free massive scalar field (with quadratic kinetic term) in
detail, by introducing a discretization of spacetime.

We pick spacetime to be a square lattice of spacing ε . We further take the volume of
d-dimensional space to be V = Ld (effectively an infrared cutoff). Later on we will take the
ε→ 0 and V →∞ limits in order to recover the continuum limit. Expanding our quantum
field possessing Klein-Gordon action in terms of Fourier modes gives

φ(xi) =
1

V

∑
n

e−ikn·xiφ(kn) (234)

where the wavevector kµn is

kµn =
2πnµ

L
(235)

where
nµ ∈ Z , |kµ| < π/ε (236)

(Note that, in the continuum limit, 1
V

∑
n −→

∫
dDk

(2π)D
.)

In general the Fourier coefficients are complex; for a real scalar field we have

φ?(k) = φ(−k) (237)

Instead of working with φ and φ? we can just as easily change basis to work with the real
and imaginary parts of φ(kn), namely <φ(kn),=φ(kn), where k0

n > 0. Since a basis change
is just a unitary transformation, we can write the measure as

Dφ(x) =
∏
k0n>0

d<φ(kn)d=φ(kn) (238)
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In this approach where we discretized spacetime on a square lattice, we have for the scalar
field action (D = d+ 1)

S0 =

∫
dDx

(
1
2
∂µφ∂µφ− 1

2
m2φ2

)
=

1

V

∑
k0n>0

1
2

(
k2
n −m2

)
|φ(kn)|2

= − 1

V

∑
k0n>0

(m2 − k2
n)
[
<φn2 + =φn2

]
Notice that for our real scalar field m2−k2

n = m2−| ~kn|2 +(k0
n)2, a quantity which is positive

as long as k0
n is large enough. We will assume that this is satisfied in the following; if not,

we will define it in other regions by analytic continuation.
Now we can actually evaluate our Feynman path integral for our free real scalar field in

the discretized spacetime regularization:

Zs=0,free =

∫
DφeiS0

=

∏
k0n>0

∫
d(<φn)d(=φn)

 exp

− i

V

∑
n|k0n>0

(m2 − k2
n)|φn|2


=

∏
k0n>0

∫
d(<φn)d(=φn) exp

− i

V

∑
n|k0n>0

(m2 − k2
n)|<φn|2

×
× exp

− i

V

∑
n|k0n>0

(m2 − k2
n)|=φn|2


=

∏
k0n>0

√
−iπV

(m2 − k2
n)

√
−iπV

(m2 − k2
n)

=
∏
kn

√
−iπV

(m2 − k2
n)

Given the prevalence of (m2 − k2
n) in the above expressions, we should wonder how

the contour in the complex plane should be handled. Earlier, we needed to take the limit
T → ∞(1 − iε) in order to make a well-defined path integral. Now, note that rotating a
contour 90� counterclockwise in the complex plane yields t → t(1 − iε). Accordingly, k0 –
with its upstairs index – transforms as k0 → k0(1− iε) in all expressions. Therefore,

(k2 −m2)→ (k2 −m2 + iε) (239)

This contour choice is necessary in order to ensure that the Gaussian integrals making up Z
converge to a physically sensible answer.

As yet, our final expression for Z is not written such a way that the generalization to
non-free fields is obvious. We now make a quick detour to describe another way of writing
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the answer, in terms of what is known as a functional determinant, which makes the
generalization to interactions and other spins more clear.

Consider a Gaussian integral of the form

I =

(∏
k

∫
dξk

)
exp (−ξiBijξj) (240)

where B is a symmetric matrix with eigenvalues bi. Diagonalize B via orthogonal matrix O,
and switch to xi variables defined by

ξi = Oijxj (241)

Then

I =

(∏
k

∫
dξk

)
exp (−ξiBijξj)

=

(∏
k

∫
dξk

)
exp

(
−
∑
i

bix
2
i

)

=
∏
i

(∫
dxi exp

(
−
∑
i

bix
2
i

))
=

∏
i

√
π

bi

= const. × 1√
det(B)

In other words, (∏
k

∫
dξk

)
e−ξiBijξj = (const.)(det(B))−1/2 (242)

We will see later on that formulae like this one will arise in multiple situations in cases
with quantum fields of spins higher than zero, except that the power of the determinant is
different. In particular, we will see soonish that fermionic fields give rise to a determinant
to a positive power.

Now let us stare at what we just computed. Notice that

S0[φ] = 1
2

∫
dDx

[
φ
(
−∂2 −m2

)
φ
]

+ (surface term) (243)

So, provided integration by parts makes sense in our spacetime and with our field theory,
formally we can write

B =
(
−∂2 −m2

1
)

(244)

as a matrix. Therefore

Zφ =

∫
Dφ exp (iS0[φ]) = (const) ·

[
det(m2 + ∂2)

]−1/2
(245)
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This thing is known as a functional determinant, as mentioned earlier. It may seem ill-
defined, but because of what we learned in the previous subsection we know that in fact any
wildly oscillating phases in the expression for Zφ will cancel out of expressions for physical
correlation functions.

Let us now see how the Wick contraction formula familiar from canonical quantization
makes an appearance in the functional path integral approach, starting with the two-point
correlation function. To see how that comes about we need to Fourier expand our fields
living on the square spacetime lattice:

φ(x1) =
1

V

∑
m

e−ikm·x1φm (246)

Then, in computing the time-ordered product (233) appropriate for the two-point correlation
function, we have for the numerator

numerator =

 ∏
n|k0n>0

∫
d(<φn)d(=φn)

 1

V 2

∑
m,`

e−i(km·x1+k`·x2)×

×(<φm + i=φm)(<φ` + i=φ`) exp

− i

V

∑
n|k0n>0

(m2 − k2
n)
[
(<φn)2 + (=φn)2

]
Many of the terms in this expression are zero by symmetry. In fact, the only surviving

terms arise from when
km = ±k` (247)

Suppose for definiteness that k0
n > 0. Inspecting km = +k`, we can see that the term

involving (<φn)2 is nonzero but is exactly cancelled by the term involving (=φn)2. For
km = −k`, because of the reality condition on the scalar field an extra relative − sign arises
between the (<φn)2 and (=φn)2 pieces, and so they add rather than cancelling. If instead
k0
n < 0, the final expressions end up being very similar.

Doing the integrals over <φn and =φn gives for the two-point correlation function nu-
merator

numerator =
1

V 2

∑
m

e−ikm(x1−x2)

∏
k0n>0

−iπV
(m2 − k2

n)

 ∏
k0m>0

−iπV
(m2 − k2

m)

 (248)

Let’s inspect this expression carefully. If we had not included the two field operators
in the numerator (in order to find the two point correlator), then the first [...] factor in the
above equation would have been already obtained. The new part, the bit with the meat in it,
is the second factor. This is in fact none other than the Feynman propagator in discretized
form. So in the continuum limit,

〈0|T {φ(x1)φ(x2)} |0〉 =

∫
dDk

(2π)D
ie−ik·(x1−x2)

(k2 −m2 + iε)
= DF (x1 − x2) (249)
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This is exactly the same as was obtained in QFT1 from the canonical quantization approach.

How about higher correlation functions? Well, one thing we can see immediately by
symmetry from the properties of Gaussian integrals is that in free scalar field theory

〈0|T {φ(x1)φ(x2)φ(x3)} |0〉 ≡ 0 (250)

The next least trivial task is to compute the four-point correlator. Again, we will display
how to compute it here in gory detail, but in future we won’t repeat the same level of detail.

For the four-point correlator, by analogy with the two-point case we’ll be looking at a
numerator with the Fourier expansions of the four field operators φ = (<φ+=φ) at positions
(x1, x2, x3, x4) with Fourier mode numbers labelled by (m, `, p, q) respectively. Again, by
symmetry, many of the terms in the integrand are zero. Nonvanishing pieces will show up,
as with the two-point correlator case, whenever particular pairs of φs pair up rather than
cancelling out.

Consider one of these nonzero contributions: it occurs when

k` = −km, kq = −kp (251)

After performing the Gaussian integrals, we find

1

V 4

∑
m,p

e−ikm·(x1−x2)e−ikp·(x3−x4)

 ∏
n|k0n>0

−iπV
(m2 − k2

n)

×
×

 ∏
n|k0n>0

−iπV
(m2 − k2

m + iε)

 ∏
n|k0n>0

−iπV
(m2 − k2

p + iε)


−→

V →∞

 ∏
n|k0n>0

−iπV
(m2 − k2

n)
DF (x1 − x2)DF (x3 − x4)


Therefore, one part of the four-point correlation function is DF (x1 − x2)DF (x3 − x4). This
should look familiar! :D It is just our old friend the Wick Contraction, applied between the
first and third field operators in the time-ordered product. By looking at the other pairings
of momenta k`, km, kq, kp, we can see that there are two other terms which are identical
except for a shuffling of indices. Putting all the pieces together and summing (over all full
contractions, in the language of canonical quantization) gives the four-point function

〈0|T {φ(x1)φ(x2)φ(x3)φ(x4)} |0〉 = DF (x1 − x2)DF (x3 − x4)+
DF (x1 − x3)DF (x2 − x4)+
DF (x1 − x4)DF (x2 − x3)

Notice that the quantity : T exp(−i/~
∫
dtĤ) : appears nowhere in this analysis. Nonethe-

less, our newfangled functional approach produced the same answer as the canonical method.

How about general potentials? Can we say anything when the field theory is not free?
The Feynman path integral approach is of course well-suited to general potentials, in-

cluding those higher than quadratic in fields. The main restriction, as with the canonical
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approach, is that perturbation theory is the main vector for analysing the physics. Treating
the potential as a small perturbation about the free action, we perform an expansion

exp

(
i

~

∫
dDxL

)
= exp

(
i

~

∫
dDxLfree

)
×
[
1 +

i

~

∫
dDxLint(φ) + · · ·

]
(252)

For instance, for

Lint = − λ
k!
φk (253)

for small λ we can write

eiS[φ]/~ = eiS0/~
(

1− i

~

∫
dDx

λ

k!
φk + · · ·

)
(254)

Notice that
i

~

∫
dDxLint = − i

~

∫
dDxVint = − i

~

∫
dDxHint (255)

which starts to smell an awful lot like canonical quantization. In fact, as we will see, per-
turbation theory ends up being identical. More explicitly, by using our generalized formula
(233)

〈Ω|T {φH(x1) · · ·φH(xn)} |Ω〉 = lim
T→∞(1−iε)

∫
Dφ · φ(x1) · · ·φ(xn) · exp

(
i
∫ +T

−T L
)

∫
Dφ exp

(
i
∫ +T

−T L
) (256)

It is straightforward, if tedious, to see that again

• The prefactor piece ∏
n|kn>0

−iπV
(m2 − k2)

(257)

cancels between the numerator and denominator.
• The full interacting correlation function is expressed solely in terms of free correlators.
• The combinatorics work exactly as in canonical quantization. In particular, all discon-

nected bubble diagrams exponentiate.

The reason we won’t be going into gory detail to compute this the same way we computed
the two-point correlation function earlier is that there’s a much slicker way of doing it –
by taking advantage of the power of functional calculus. Instead of dealing with all these
awkward Fourier transforms, integrations, etc, we’ll introduce the concept of a source in the
action. This single clever concept

S → S + Ssource = S +

∫
φ · J [φ] (258)

will allow us to generate correlation functions via functional differentiation of the Feynman
path integral with respect to the source J(φ). It also bears a remarkable resemblance to a
field Legendre transformation, which is no accident.
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5 Generating functionals

First, a lightning review of the salient features of functional differentiation. The axioms for
functional differentiation are

δ

δJ(x)

∫
dDyJ(y)φ(y) = φ(x) , or

δ

δJ(x)
J(y) = δ(D)(x− y) (259)

For example,

δ

δJ(x)
exp

(
i

∫
dDyJ(y)φ(y)

)
= iφ(x) exp

(
i

∫
dDyJ(y)φ(y)

)
(260)

Integration by parts can prove handy. For instance:

δ

δJ(x)

∫
dDy (∂µJ(y))V µ(y) = −∂µV µ(x) (261)

5.1 The generating functional for all Feynman graphs

We now have enough background to define the generating functional Z[J ]9:

Zscalar[J ] ≡
∫

Dφ exp

[
i

~

∫
dDx {L + J(x)φ(x)}

]
(262)

We will find correlation functions by operating on Z[J ] with functional derivatives δ/δJ .
The general n-point correlation function is then

〈0|T {φ(x1) · · ·φ(xn)} |0〉 =
1

Z

(
−i δ

δJ(x1)

)
· · ·
(
−i δ

δJ(xn)

)
Z[J ]

∣∣∣∣
J=0

(263)

This formula holds for interacting scalar field theories. For free scalar field theory it can
be rearranged in a very explicit way which makes extracting correlation functions a piece of
cake compared to how we computed them earlier, so we now show how this works.

Consider ∫
dDx (L0 + J · φ) =

∫
dDx

[
1
2
φ
(
−∂2 −m2 + iε

)
φ+ J · φ

]
(264)

Let’s complete the square here by defining

φ′(x) ≡ φ(x)− i
∫
dDyDF (x− y)J(y) (265)

where DF (x− y) is our friend the Feynman propagator. In terms of this shifted field,∫
dDx (L0 + J · φ) =

∫
dDx

[
1
2
φ′
(
−∂2 −m2 + iε

)
φ′
]

9To avoid confusion, we will use the subscript 0 to refer to a free field theory, not a spin zero field theory.
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−
∫
dDx

∫
dDy 1

2
J(x) [−iDF (x, y)] J(y)

More formally, we can write

φ′ ≡ φ+
(
−∂2 −m2 + iε

)−1
J (266)

because DF is (as you will know from PHY2403F) the Green’s Function of the Klein-Gordon
operator.

Our expression becomes∫
dDx [L0 + J · φ] =

∫
dDx

[
1
2
φ′
(
−∂2 −m2 + iε

)
φ′ − 1

2
J
(
−∂2 −m2 + iε

)−1
J
]

(267)

From a functional perspective, our shifted field is literally just a shift: the quantity

φ′ = φ− i
∫
dDyDF (x− y)J(y) (268)

does not involve φ explicitly and so the Jacobian of the transformation is unity.

Dφ′ = Dφ (269)

Therefore,

Z[J ] =

∫
Dφ′ exp

(
i

∫
dDxL0(φ′)

)
exp

(
−i
∫
dDxdDy 1

2
J(x) [−iDF (x− y)J(y)]

)
(270)

Notice that the first factor here is simply the free path integral. The other piece is independent
of φ′, so we can write

ZKG[J ] = Z0 exp

(
−1

2

∫
dDxdDyJ(x)DF (x− y)J(y)

)
(271)

This little devil of a formula is extremely useful, as we can now see explicitly by using it to
compute the free two- and four-point functions that we so laboriously extracted earlier by
discretizing spacetime and tussling with Fourier expansions.

For the two-point function:

〈0|T {φ(x1)φ(x2)} |0〉

= − δ

δJ(x1)

δ

δJ(x1)
exp

[
−
∫
dDxdDy 1

2
J(x)DF (x− y)J(y)

]∣∣∣∣
J=0

= − δ

δJ(x1)

{[
−1

2

∫
dDyDF (x2 − y)J(y)− 1

2

∫
dDxJ(x)DF (x− x2)

]
Z[J ]

Z0

}∣∣∣∣
J=0

= DF (x1 − x2)

Notice that taking one δ/δJ brought down two identical factors, each of which had a J in it.
Therefore, the second δ/δJ only gave terms surviving at J = 0 when it acted on the {· · · }
factor, not on the Z[J ]/Z0 part.
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Let’s do the four-point function too:

〈0|T {φ(x1)φ(x2)φ(x3)φ(x3)} |0〉

=
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)
exp

(
1
2

∫
dDxdDyJ(x)DF (x− y)J(y)

)∣∣∣∣
J=0

=
δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)
(−J(x)DF (x− x4)) exp

(
−1

2

∫
dDxdDyJ(x)DF (x− y)J(y)

)∣∣∣∣
J=0

=
δ

δJ(x1)

δ

δJ(x2)
[DF (x3 − x4) + J(x)DF (x− x4)J(y)DF (y − x3)] e−

1
2
JDF J

∣∣∣∣
J=0

=
δ

δJ(x1)
[DF (x3 − x4)J(x)DF (x− x2)

+DF (x2 − x4)J(y)DF (y − x3) + J(x)DF (x− x4)DF (x2 − x3)] e−
1
2
JDF J

∣∣∣∣
J=0

= DF (x3 − x4)DF (x1 − x2) + DF (x2 − x4)DF (x1 − x3) + DF (x1 − x4)DF (x2 − x3)

Yay! That was easy! :D
In summary: by using the source trick

S −→ S +

∫
dDx φ · J [φ] (272)

we found the two-point and four-point correlation functions for the free scalar field theory.
Moreover, the functional differentiation process we went through straightforwardly gener-
alizes to give the n-point correlation functions for free scalar field theory. The resulting
expression is: ∫

[dφ]eiS0[φ]φ(y1) · · ·φ(yn)∫
[dφ]eiS0

=
∑

pairs(ij)

∏
DF (yi − yj) (273)

This is of course just Wick’s Theorem in disguise. Here, as distinct from PHY2403F, we
derived it using functional calculus: no field operators were harmed in the production
of this formula.

5.2 Analogy between statistical mechanics and QFT

Functionally differentiating w.r.t. a source term linear in J(x) in the Feynman phase eiS/~

is similar in spirit to the mechanism we often use to compute thermal average behaviour in
statistical mechanical systems. To pin this down more precisely, let us think carefully about
contours in the complex momentum plane. Recall that we had the prescription

1

(k2 −m2)
−→ 1

(k2 −m2 + iε)
(274)

in propagators, in order to render the Feynman path integral well-defined. This +iε pre-
scription ‘tips’ the contour into the complex plane in ‘under-and-over’ style just the right
direction to allow rotation counterclockwise onto the imaginary axis.

54



This motivates us to wonder what the Wick rotated version of the Feynman path integral
(FPI) might be physically. Let us rotate

t = −iτ (275)

Then
x · x = t2 − |~x|2 = −τ 2 − |~x|2 ≡ −x2

E (276)

By looking at each Feynman diagram in turn, it can be shown that the analytic continu-
ation of the time variables in any Green’s function of a QFT gives a correlation function
invariant under rotational symmetry of D-dimensional Euclidean space. In D dimensions
this symmetry group is SO(D) rather than the Lorentz group SO(1, d = D − 1).

To end this exposition of functional quantization for scalar field theory, let’s now do a
specific example to see the Stat Mech ↔ QFT connection. Suppose we pick φ4 theory for
definiteness. The Lorentzian signature action reads

SL =

∫
dDx(L + J · φ) =

∫
dDx

[
1
2

{
(∂φ)2 −m2φ2

}
− λ

4!
φ4 + J · φ

]
(277)

Wick rotating gives

SL = −i
∫
dDxE

[
1
2

{
−(∂Eφ)2 −m2φ2

}
− λ

4!
φ4 + J · φ

]
= i

∫
dDxE(LE − J · φ) (278)

Since eiSL/~ = e−SE/~, this RHS of the above equation is just the expression for the Helmholtz
free energy of a D-dimensional ferromagnet in the Landau theory in disguise, if φ(xE) plays
the role of the fluctuating spin field, and J plays the role of an external magnetic field.

The Wick rotated generating functional becomes

Z[J ] =

∫
Dφ exp

(
−
∫
dDxE [LE − J · φ]

)
(279)

Note that this is well-definined – when the Euclidean action is large this happens either
because the field or field gradients get large. No oscillatory behaviour here; just damping.
The groundstate energy is bounded from below.

The exponential that we see above is therefore exactly like a statistical weighting factor
(recall the grand canonical partition function). Inspecting the two-point function for λ = 0,
in direct analogy to before we find

〈0|T {φ(xE,1)φ(xE,2)} |0〉 =

∫
dDkE
(2π)D

exp (ikE · (xE,1 − xE,2))

(k2
E +m2)

(280)

In other words, this is the Feynman propagator in the spacelike region. For massive fields,
the coordinate space Yukawa potential falls off as e−m|xE,1−xE,2|. Therefore, the Compton
wavelength λ = h/(mc) of quanta in QFT translates in Stat Mech language to the correlation
length for statistical fluctuations. For more cute observations about crossovers between
theoretical HEP and theoretical condensed matter, try the Quantum Field Theory in a
Nutshell book by Anthony Zee.
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5.3 Feynman rules for scalar field theory

In position space, the Feynman rules for spin-zero field theory can be summarized as follows.

• Write the potential as V (φ) = g
∑

j vjφ
j/j!

• At O(gn), contributions like vj1 · · · vjn will arise; associate this with a diagram with n
vertices. The ith vertex has ji lines emanating from it.
• Each propagator is denoted by a line, and must either connect two vertices (denoted

by • •) or connect a vertex to an external source (denoted by • ×)
• The E-point Green’s functions have E external lines. The number of internal lines I

is given by 2I =
∑

i ji − E.
• Each internal line connecting two points (x1, x2) is represented by a Feynman propa-

gator DF (x1 − x2).
• Each external line gets a factor DF (yi − xa)J(xa).
• Integrate over internal and external points. For just an n-point Green’s function, omit

the integrals over external points and J(xa) pieces.
• A Feynman graph at nth order comes with a factor (ig)nvj1 · · · vjnSG where SG is a

combinatoric factor, equal to the number of times a graph can be obtained in a sum
over all possible pairings (normalized by the 1/j! bits in the definition of vji).

What changes if we switch to momentum space?

• The Feynman propagator becomes: DF (k) = i/(k2 −m2 + iε).
• Instead of integrating over positions of points, integrate over loop momenta

∫
dDk/(2π)D.

• Enforce momentum conservation at each vertex with incoming momenta {pi} via delta
functions (2π)DδD(

∑
i pi).

• Enforce overall momentum conservation.

This list of steps allows us to compute the physics of the interacting scalar field theory, in
the approximation |g| � 1 where perturbation theory is valid.

5.4 Generating functional for connected graphs W [J ]

Previously, we calculated the generating functional for free scalar field theory – as a prélude
to doing the calculation for interacting field theories. We found

Z0[J ] = exp

(
−1

2

∫
J(x)DF (x− y)J(y)

)
(281)

Let us now use this knowledge to motivate definition of another generating functional W [J ],
which is closely related to Z[J ] but different in important ways. The physical utility of the
new generating functional W [J ] is that it allows us to focus only on connected Feynman
graphs, which are the ones of interest for computing physical scattering amplitudes.

Denoting by N the normalization constant in the FPI, we had

Z0[J ]

N
= 1− 1

2

∫
JDFJ +

1

2!

(
1

2

∫
JDFJ

)2

− 1

3!

(
1

2

∫
JDFJ

)3

· · ·
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= 1− 1

2
× ×+

1

2!

(
1

2

)2 × ×
× × −

1

3!

(
1

2

)3 × ×
× ×
× ×

(282)

Look at the structure we are seeing here. The physics is driven solely by × ×. Mathe-
matically, because of the combinatorics it is manifest that this exponentiates to give Z0[J ].
Therefore, we define a new W [J ] by

Z[J ] ≡ exp (iW [J ]) (283)

Of course, for the free scalar field theory example, we would have W0[J ] = −
∫

1
2
JDFJ .

The really amazing thing about W [J ] is that it has contributions from connected Feyn-
man graphs only. We have seen this directly above in the free case, but it is also pretty
straightforward to show that this conclusion holds not only for free field theories but also
for interacting QFTs as well (at least in perturbation theory). The underlying reason is the
structure of the Feynman rules, as written above.

The major physics concept introduced here is that the sum over all Feynman graphs
is the exponential of the sum over connected Feynman graphs. This follows in the
interacting case from (a) the Feynman rules and (b) the combinatorics of the symmetry-factor
SG, because a graph G with k identical disconnected pieces has an obvious Sk symmetry
with order k!. As we develop explicit examples at one-loop level we will see this illustrated
in more detail.

One awesome thing about W [J ] is that the Feynman rules for Z[J ] and W [J ] are identical,
except for W [J ]’s omission of disconnected graphs. Such disconnected graphs will cancel out
of physical correlation functions anyway.

5.5 Counting powers of the coupling constant

Suppose that by a clever rescaling of fields we can write

S[φ] =
1

g2
s(φ) (284)

where |g| � 1 is a small dimensionless parameter and s[φ] contains only nonnegative powers
of g. In such a physical situation we can immediately deploy the stationary phase approxi-
mation, a.k.a. the method of steepest descents. This focuses us on stationary points where

δs

δφ(x)
+ J(x) = 0 (285)

i.e., the classical field equation in the presence of the source J .
Define a new field - a hybridized function/functional beastie - which is a regular function

of x while being a functional of J . This φ(x, [J ]) is the classical solution to the above
stationary phase equation. The connection between φ(x, J [x]) and the connected generating
functional W [J ] is

Wcl[J ] =
1

g2

(
s[φ[J ]] +

∫
Jφ[J ]

)
(286)
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In the classical approximation, then, the connected generating functional is the Legendre
transformation of the classical action. Incidentally, solving the classical field equations with
a source J of O(1) sums up all tree diagrams, with any number of external legs.

If the functional s[φ] is g-independent, then the semiclassical expansion also has a topolog-
ical interpretation in terms of Feynman graphs. To see this, start by denoting the stationary
point of the J = 0 functional integral as φ0. Then the first correction to the classical action
is

S(2)[φ0, δφ] ≡ 1

g2

∫
dDxdDyδφ(x)δφ(y)

δ2s

δφ(x)δφ(y)

∣∣∣∣
φ=φ0

(287)

Define a rescaled field fluctuation by
∆ ≡ gδφ (288)

Then O(1) fluctuations in ∆ correspond to O(g) fluctuations in our original fields δφ, and

1

g2
s[φ] =

1

g2
s[φ0] + s2[∆] +

∑
j

gj−2vj[∆] (289)

To work out which terms contribute to an E-point function at O(gm), consider our
vertices vji in a Feynman graph.

• The number of lines V =
∑

i ji emanating from a vertex has to sum up to n:∑
i

(ji − 2) =
∑
i

ji − 2V = n (290)

Note that the −2 in the (ji − 2) term is present because of the scaling (289) above.
• The number of internal lines I is

I = 1
2

∑
i

ji − E (291)

• The number of loops for a connected diagram is

L = I − V + 1 = 1
2

∑
i

ji − E − V + 1 = n/2− E + 1 (292)

Therefore, for a fixed number of external lines the g2 expansion is the loop expansion. This
is what we set out to show.

5.6 Quantum [effective] action and 1PI diagrams

Before we introduce Γ[φ], let us do a lightning review of usefulness of Legendre transforma-
tions. Consider a curve f(x). What equation does the tangent to the curve possess? Let g
be the intercept on the f axis and let u = df/dx be the gradient. Then the tangent to the
curve has equation

f = ux+ g .

Now suppose that we wish to pick u as the independent variable, and let g be the dependent
one, i.e., g = f − ux. How do we reconstruct f(x), if we know only g(u)? The problem is
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that knowing g(u) does not uniquely reconstruct f ; it fails to do so because derivatives do
not see constant shifts. So we use the envelope of tangents method,

g(u) = f(x)− ux .

Let us recall a thermodynamics example. Suppose we have U = U(S, V ). But S, being
extensive, does not lend itself to measurement nearly as easily as temperature does! So let
us define F (T, V ) = U(S, V )− TS, where

T =

(
∂U

∂S

)
V

which follows from the first law, dU = TdS−pdV . The analogy here between path integrals
and statistical methanics is actually very deep:-

Feynman path integral partition function
ZFPI = eiW ZSM = e−βF

W [J ] = Γ[φ] +
∫
Jφ F (T ) = U(S)− TS

Based on this knowledge, let us now introduce a Legendre-transformed connected gener-
ating functional Γ[φ[J ]] via

W [J ] ≡ Γ[φ[J ]] +

∫
J · φ[J ] (293)

Then φ(x, [J ]) is a solution of
δW

δJ(x)
= φ(x, [J ]) (294)

The quantity Γ[φ(x, [J ])] is called the quantum action, sometimes confusingly called the
quantum effective action. The expansion coefficients of Γ

Γ[φ] =
∑
n

1

n!

∫
dDx1 · · · dDxnΓn(x1 · · · xn)φ(x1) · · ·φ(xn) (295)

are called one-particle irreducible (1PI) Green’s functions. Diagramatically, we construct
1PI Green’s functions as the sum of all graphs that cannot be cut into disconnected parts
by chopping one propagator line. Note that, at tree level, vertices are straightforwardly
obtained from the classical action.

You should think of 1PI diagrams as being a bit like Lego blocks. To give the punch line
first: connected Green’s functions are built from tree diagrams with

• 1PI functions as vertices;
• propagators as full connected two-point functions.

How would we prove this assertion? Begin with

W [J ] = Γ[φ[J ]] +

∫
J · φ[J ] (296)
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Since

δ2W

δJ(x)δJ(y)
=

δ

δJ(x)
[φ(y)] =

(
δφ(x)

δJ(y)

)
=

(
δJ(y)

δφ(x)

)−1

= −
(

δ2Γ

δφ(x)δφ(y)

)−1

(297)

Note that this inverse is a functional inverse, in the sense of∫
dDxK(x, z)K−1(z, y) = δD(x− y) (298)

for any K. In discretized spacetime, this is matrix inversion and (297) is the continuum limit
of it. Another way to write (297) is graphically:

��
��
W2 =

(
��
��

Γ2

)−1

We can derive more by differentiating w.r.t. J :

δ3W

δJ(x)δJ(y)δJ(z)
= − δ

δJ(z)

(
Γ−1

2 (x, y)
)

(299)

Our next necessity here is to define how to differentiate the functional inverse. It is simplest
to use the discretization of spacetime regularization, and use matrix discretization as a guide.
We know that for invertible matrices K, d(K−1) = −K−1dKK−1, and so by analogy

W3(x, y, z) =

∫
dDw1

∫
dDw2W2(x,w1)W2(y, w2)

δΓ2(w1, w2)

δJ(z)
(300)

Now, by definition, W [J ] = Γ[φ[J ]] +
∫
J · φ[J ], and so φ = δW [J ]/δJ . Using that and the

chain rule for differentiation gives

W3(x, y, z) =

∫
dDw1

∫
dDw2

∫
dDw3W2(x,w1)W2(y, w2)W2(z, w3)Γ3(w1, w2, w3) (301)

Graphically, this is

&%
'$
W3

@
@
@

�
�
�

= &%
'$

Γ3

@@ ��
��
��

W2��
��

W2

��
��
W2

��@@

You will be working out the n = 4 case as part of the second homework assignment, HW2.
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5.7 The generating functional and the Schwinger-Dyson equations

Let us now turn to connecting our powerful newfangled functional methods for doing quan-
tum field theory back to our knowledge from canonical quantization.

The story of the Schwinger-Dyson equations relies on two familiar pieces of physics from
canonical quantization: (a) the canonical commutation relations (CCRs) and (b) the Heisen-
berg equations of motion for the field operators. Their basic idea was to derive a closed set
of equations for all n-point Green’s functions. The resulting Schwinger-Dyson equations
give Z[J ] as that generating functional, and are practically useful as well. Note that in this
subsection φ denotes the field operator. Suppose, for definiteness, that we pick the kinetic
term to be quadratic in field derivatives:

L = 1
2
(∂φ)2 − V (φ) (302)

where V (φ) may include a mass term of the form 1
2
m2φ2.

Since n-point Green’s functions are

〈0|T {φ(x1) · · ·φ(xn)} |0〉 (303)

it follows immediately that the generating functional for these Green’s functions (in the
mathematical sense) is none other than the vacuum persistence amplitude in the presence
of a source J :

Z[J ] ≡ 〈0|T
{

exp

(
i

~

∫
dDx J(x) · φ(x)

)}
|0〉 (304)

Note that this equation is not the same expression as we had for the FPI: it is a canonical
beastie.

We have to be careful to keep track of the effect of time-ordering. For instance, consider

∂2
0〈0|T {φ(x)φ(y)} |0〉

= ∂0

[
〈0|
(
T
{
∂0φ(x)φ(y) + δ(x0 − y0)[φ(x), φ(y)]

})
|0〉
]

= 〈0|T
{
∂2

0φ(x)φ(y)
}
|0〉 − iδD(x− y) (305)

Here we used the CCRs [φ(x),Π(y)] = i, where Π is the field canonical momentum. Also,
notice something important about the intermediate step above. Since field operators φ(x)
commute at equal times, it might have appeared that the second term could be dropped.
That presumption would be incorrect, because it gives the wrong answer when further deriva-
tives are taken: it misses the contact term.

As an alert reader can check explicitly, the above expression can be generalized. The
result is:

∂2
0〈0|T {φ(x)φ(y1) · · ·φ(yn)} |0〉

= 〈0|T
{
∂2

0φ(x)φ(y1) · · ·φ(yn)
}
|0〉

−i
∑
j

δD(x− yj)〈0|T {φ(y1) · · ·φ(yj−1)φ(yj+1) · · ·φ(yn)} |0〉 (306)

This expression, involving subtle delta function pieces, is the nugget of the Schwinger-Dyson
story. The rest of our calculation will amount to using this fact that correlation functions
obey differential equations involving contact terms (bits with delta functions).
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Next, we multiply through by J(y1) · · · J(yn) and integrate against the nugget. For our
next trick, we then recruit the Heisenberg equations of motion for ∂0φ to substitute for time
derivatives of field operators. You should check explicitly on your own that the resulting
equation is

∂2

(
−i δZ

δJ(x)

)
= −

{
∂V

∂φ

[
−i δ

δJ(x)

]
+ J(x)

}
Z[J ] (307)

The partial derivatives ∂ in this expression are fully relativistic, and Z[J ] is the generating
functional for all [canonical] Green’s functions.

Our next step is most convincing if we work in a regularization where spacetime is
discretized. We write the nth Fourier mode of φ(x) as φn and the nth Fourier mode of J(x)
as Jn. In this discretized context, ∂2 becomes a (symmetric) matrix Kmn. In discretized
form, then, the Schwinger-Dyson equations become

Kmn · −i
∂Z

∂Jn
= −

[
V ′
(
−i ∂

∂Jm

)
+ Jm

]
Z[J ] (308)

Now for the crucial point. Notice that the only explicit J-dependence in this expression is
linear. Since for Fourier transforms i∂ acts like −ik, the Fourier transform of the Schwinger-
Dyson equations in our discretized world will be a set of first-order PDEs. Nominating our
Fourier transform variable to be φn, we write the solution as

Z[J ] ≡
∫

[dφ] exp (iS[φ] + iJnφn) (309)

The Fourier-transformed Schwinger-Dyson equations then become a differential equation for
this creature S:-

∂S

∂φm
= Kmnφn −

∂V

∂φn
(310)

This equation has an obvious solution:

S = 1
2
φmKmnφn − V (φ) + c (311)

The additive constant cannot be determined from the Schwinger-Dyson equations as those
equations are homogeneous in Z. Let us now return to the continuum limit. We have:

S =

∫
dDx

[
−1

2
φ∂2φ− V (φ)

]
=

∫
dDx

[
+1

2
(∂φ)2 − V (φ)

]
(312)

where we used integration by parts and absorbed a normalization constant.
Notice that this is the action for the scalar field theory whose physics we started out to

study. In other words, our friend the familiar Feynman Path Integral with a source term

Ssource =

∫
dDxφ(x) · J(x) (313)

literally is the object which is the generating functional for all Green’s functions - in the
[free or] interacting theory. This fact holds in canonical quantization so of course it must be
true! This gives us another reason, albeit based in canonical quantization, to pay attention
to the generating functional with source Z[J ]. Either way, Z[J ] is a very powerful animal
and we will be using it to make sense of loop diagrams for spins 0, 1

2
, 1 in the path integral

approach.
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5.8 The S-matrix and the LSZ reduction formula

This subsection is based on part of the slim but powerful textbook by Thomas Banks.
Consider a situation in which past infinity and future infinity are places where we can

widely separate incoming/outgoing particles. Define a basis of “in-states” |in〉 and a differ-
ent basis of “out-states” |out〉, which each form a basis isomorphic to the Fock space of a
collection of free particles. The overlap is 〈in|out〉 = 0. The interior of spacetime is the place
where the all-important interactions occur. The S-matrix is defined to be the animal which
takes in-states to out-states.

One very important property of QFT is the cluster property, which says that connected
parts of Green’s functions fall to zero at large spacelike separations. For massive fields this
falloff is exponential, making definition of in- and out-states straightforward. For massless
fields it is power-law (think Coulomb’s Law), and because of infrared (IR) divergences the
business of defining an S-matrix can be tricky. In the following, we pick massive fields, in
order to sidestep this technical subtlety. Further information may be found in the textbooks
listed on the course web site.

The S-matrix is a unitary transformation on a subspace of Hilbert space, the “scattering
states”, which are orthogonal to all bound states of the particles. The entire Hilbert space
is thus spanned by scattering states, but only if we treat bound states as separate particles.
We will make this assumption in the following as well.

Here is a cartoon picture of the setup for the S-matrix.

In the interacting QFT it is very difficult to compute the physics and know the energy
eigenstates of the Hamiltonian. The technology of Green’s Functions allows us to finesse this
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problem somewhat. But our most helpful tool here will actually be the Lehmann-Symanzik-
Zimmerman (LSZ) reduction formula, which provides us the connection between Green’s
functions and Feynman graph technology and the physical S-matrix.

Assume that there exists a single-particle state, of mass m and spin zero. (Note: this
story can be straightforwardly generalized for other types of fields than massive scalars.)
Assume further that there exists a local field Φ, which is not necessarily an elementary
Lagrangian field, such that

〈0|Φ(x)|p〉 =

√
z

(2π)d2Ep
eip·x (314)

where Ep is the energy associated to the particle with momentum ~p. As you should check,
the form of the RHS here follows directly from Lorentz invariance. z is a normalization
constant and should not be mistaken for the entire functional integral Z[J ].

Let Z[Φ] denote the generating functional of Green’s functions of the field Φ. Let the
source be

J =
∑
i

J iin +
∑
j

J jout (315)

where components of J are defined by∫
J iinΦ(x) =

i√
z
εiin lim

t→−∞

∫
ddx

(
Φ∂0φ

i
in − φi∗in∂0Φ

)
(316)

Here εiin is an infinitesimal expansion parameter, and φiin is a normalizable positive-energy
solution of the Klein-Gordon equation. For a free field, the RHS of the above equation would
be just the creation operator for a one-particle wavefunction φin. Notice that

• For any local field Φ(x), the source creates a state localized around an infinitely spa-
tially distant point in the limit t→ −∞.
• For a matrix element 〈η|

∫
JΦ|ψ〉 between states |ψ〉 and |η〉 with fixed momentum

vectors pµ, the only surviving terms in the limit t→ −∞ arise from (pµψ − pµη)2 = m2.
• If we pick all incoming and outgoing wavefunctions to be spatially localized around

different asymptotic directions in the limit t → ±∞, then this operator acts just like
an “in” creation operator even in the interacting theory!

Similarly, the “out” part of the source J acts like a sum of annihilation operators. In that
case, the outgoing wavefunctions are negative-energy solutions of the KG equation (this is
a convention: we have chosen “all momenta incoming”), and we take the limit t → +∞
instead.

Now, from its definition, Z[J ] is just

Z[J ] = 〈0|T exp(i

∫
J · φ)|0〉 (317)

In this expression for Z[J ], all annihilation operators sit to the left of all creation operators.
So it is at least possible that Z[J ] with this source could be the generating functional of the
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S-matrix. More precisely, the coefficient of ε1in · · · εminε1out · · · εnout in the expansion of Z[J ] with
this source is the S-matrix element

〈out; f1 · · · fn|g1 · · · gm; in〉 (318)

Other terms in this expansion of the composite source are of no particular use; they just
correspond to creation/annihilation of multiple particles in the same scattering state. In
these expressions, the single-particle states fi, gj are defined by

φiin =

∫
ddp√

2Ep(2π)d
e−iEpt−i~p·~xfi(p)

φjout =

∫
ddp√

2Ep(2π)d
eiEpt−i~p·~xgj(p) (319)

Consider our “in” source term:∫
dt iεiin∂0

{∫
ddx

(
Φ∂0φ

i
in − φi∗in∂0Φ

)}
(320)

The boundary term at t→ −∞ is what we needed, but not so for the case for the boundary
term at t→ +∞! The problem is that it contains a creation operator for a state localized in
the future. The saviour of our sanity here is that all final states are orthogonal to all initial
states, by the orthogonality of the “in” and “out” bases. So the wayward future creation
operator just ends up getting killed off and having no practical effect. (For more on the case
of partially forward scattering, see Banks and references.)

Our next step is to massage this source a bit, and for this we need three things. Firstly,
we use an [outer] partial time derivative on the Klein-Gordon scalar product. Secondly, we
make use of the Wronskian form. Thirdly, we use the fact that the φiin obey the Klein-Gordon
equation. (Note: Φ, which is not necessarily a fundamental Lagrangian field, typically does
not obey the KG equation.) Making use of these three steps yields, as the interested reader
should verify explicitly,

i

∫
dDx

{
(∇2 −m2)φiinΦ− ∂2

0Φφiin
}

= i

∫
dDxφiin

(
∂2 +m2

)
Φ (321)

The story for each of the other “in”-sources is morally identical.
The story for the out-sources the computation is very similar, with only straightforward

changes like “in” −→ “out”, t→ −∞ −→ t→ +∞.
The net result is the LSZ Reduction Formula:

〈out; f1 · · · fn|g1 · · · gm; in〉

=

(
i√
z

)m+n ∫ ∏
k

dDxkφ
k
in(xk)

∏
j

dDyj(φ
j
out)

∗(yj)×

×
(
∂2
xk

+m2
) (
∂2
yj

+m2
)
× 〈0|T {Φ(x1) · · ·Φ(xn)Φ(y1) · · ·Φ(ym)} |0〉 (322)

Warning: you will often see φin, φout replaced by plane waves. This creates some trivial
infinities in cross-sections. These are easily dealt with via regularization such as spacetime
discretization.
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Notice that the sole requirement on Φ(x) is that it have finite amplitude to create single-
particle states. This can be verified by looking for a pole in the two-point function.

A very important property of the LSZ reduction formula is that it is symmetric between
in- and out-states – except that in-states have positive energy while out-states have nega-
tive energy. This remarkable fact suggests a symmetry of the physics known as crossing
symmetry. The part of this which is technically difficult to prove is analyticity.

It is handy to have the momentum-space version of the LSZ Reduction Formula as well:

〈out; q1 · · · qn|p1 · · · pm; in〉

=

(
i√
z

)m+n∏
i

1√
2Ep(2π)d

∏
j

1√
2Ep(2π)d

×

×
(
p2
i −m2

) (
q2
j −m2

)
Gn+m(−q1, · · · ,−qm; p1, · · · , pn) (323)

where Gn+m is the Fourier transform of the time-ordered product of n+m Φ fields.
Nota Bene: For outgoing states, qi is the physical positive-energy relativistic momentum

but the Fourier Transform is evaluated at negative energy outgoing momenta {−qj}
As mentioned briefly above, translation invariance is something we need to watch in the

LSZ context. In particular, we will get a momentum-conserving δD(
∑

i pi−
∑

j qj). Squaring
this on the way to finding the probability amplitude and thereby the scattering cross-section
will result in an overall δD(0) term, which should be interpreted as the spacetime volume.
This result eventuated because, in a translation-invariant system, we should really be after
the probability per unit volume. With wavepackets rather than plane waves, this problem
vanishes from the radar screen.

One of the most important things to note about the LSZ Reduction Formula is that all
momenta are on the mass shell. Therefore, the formula involves a product of a bunch of
zeroes! This is not a contradiction; the S-matrix element does physically vanish unless a
Green’s function has a single pole at the mass shell on each external leg. As we have seen
for free scalar field theory and will see in some detail for more interesting cases shortly, this
happens readily in interesting QFTs.

Earlier this week, we learned that the full Green’s functions evaluate as trees whose
vertices are the 1PI functions and whose external and internal lines are full propagators
W2(p). As the next subsection shows, something called the Källen-Lehmann representation
for propagators shows that each Green’s function W2 does indeed have a simple pole, yielding
precisely the multiple-pole structure that is needed in order for the LSZ Reduction Formula
to predict a finite S-matrix.

5.9 Källen-Lehmann spectral representation for interacting QFTs

Recall the completeness relation for one-particle states:

11−particle =

∫
ddp

(2π)d
1

2Ep
|~p〉〈~p| (324)

Let |λ0〉 be the eigenstate of the Hamiltonian with zero momentum:

~p|λ0〉 = ~0|λ0〉 (325)
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Define

Ep(λ) ≡
√
|~p|2 +m2

λ (326)

where mλ is the “mass” of the state |λ~p〉, i.e. E(|λ0〉). Then the full Hilbert space complete-
ness relation is

1 = |Ω〉〈Ω|+
∑
λ

∫
ddp

(2π)d
1

2E~p(λ)
|λ~p〉〈λ~p| (327)

We will now make use of this little beastie by inserting it in between operators at spacetime
points x, y in the two-point function, in order to learn about the energy distribution of
contributions to the propagator. We first do the analysis for the case x0 > y0; the analysis
is very similar for x0 < y0.

First, notice that
〈Ω|φ(x)|Ω〉〈Ω|φ(y)|Ω〉 = 0 (328)

by symmetry (or by Lorentz invariance for spin s > 0). Therefore,

〈Ω|φ(x)φ(y)|Ω〉 =
∑
λ

∫
ddp

(2π)d
1

2E~p(λ)
〈Ω|φ(x)λ~p〉〈λ~p|φ(y)|Ω〉 (329)

Note that nothing here requires the φ field to be elementary. This makes the Källen-Lehmann
representation a very useful one in a wide variety of QFT contexts, for example with com-
posite operators in QCD.

In order to massage our expression further, we need to recall how translation generators
act. For a translation by x,

〈Ω|φ(x)|λ~p〉 = 〈Ω|eip̂·xφ(0)e−ip̂·x|λ~p〉
= 〈Ω|φ(0)|λ~p〉e−ip·x

∣∣
p0=E~p

= 〈Ω|φ(0)|λ~0〉e
−ip·x∣∣

p0=E~p

(330)

by Lorentz invariance of the vacuum |Ω〉 and of φ(0). Therefore,

〈Ω|φ(x)φ(y)|Ω〉|x0>y0 =
∑
λ

∫
dDp

(2π)D
ie−ip·(x−y)

(k2 −m2
λ + iε)

|〈Ω|φ(0)|λ~p〉|2 (331)

Similarly for the other case x0 < y0. Putting them together we can summarize the informa-
tion via

〈Ω|T {φ(x)φ(y)} |Ω〉 =

∫ ∞
0

dµ2

2π
ρ(µ2)DF (x− y;µ2) (332)

where the spectral density function is given by

ρ(µ2) =
∑
λ

(2π)δ(µ2 −m2
λ) |〈Ω|φ(0)|λ~0〉|

2 (333)

Peskin and Schroeder have a very nice pictorial representation of what ρ(µ2)) looks like in a
typical quantum field theory.
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The main features are:

• There is a delta-function peak at µ2 = m2, representing one-particle states.
• There are smaller peaks at m2 < µ2 < (2m)2, representing boundstates.
• At (2m)2 the spectral density rises (with discontinuous derivative), peaks a bit later

along the µ2 axis, and then falls off again at larger µ2.

Note that while the one-particle state gives an isolated delta function contribution, the two-
particle spectrum is continuous. As you can see for yourself, this is a simple consequence of
energy-momentum conservation.

The analytic structure can be easier to visualize in momentum space.
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Since the relevant variable is momentum-squared here, we find that in the complex p2

plane

• There is an isolated single-particle pole at p2 = m2, which is on the real axis.
• Poles arise between m2 < p2 < (2m)2, corresponding to boundstates.
• At p2 = (2m)2 there is a branch cut singularity. As you will recall from your complex

analysis class, this is a weaker type of singularity than a pole. Physically, the threshold
at p2 = (2m)2 corresponds to creation of particle-antiparticle pairs. Below that, the
pairs would only be virtual and so there is no corresponding branch cut structure for
p2 < (2m)2.

The one-particle pole is isolated, at m2.
The main physics lesson that can be drawn from this is that QFT is unequivocally and

inherently a multi-particle animal. Life in relativistic quantum field theories is definitely not
all about boring one-particle states!

None of the analysis here requires that the φ field be elementary, or that perturbation
theory be valid. This is what makes it so powerful and useful.
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6 Functional quantization for spin half

6.1 FPI quantization for fermions: Grassmann variables

Our development of functional quantization thus far has subtly depended upon thinking of
the fields as mathematical objects with bosonic statistics. The spin-statistics theorem says
that free spin-half fields, on the other hand, must obey the Pauli principle. So how are we
to incorporate fermionic behaviour into the formalism of path integrals?

It turns out to be surprisingly easy to solve this apparent conundrum. We introduce a new
concept called Grassmann variables, which anticommute. For any two such anticommuting
fellows θ, η we have

{θ, η} = 0 (334)

In other words, θη = −ηθ. Notice that a fermion bilinear is again a boson. Since the above
equation holds for any θ, η, it holds in particular when θ = η, i.e.

θ2 ≡ 0 (335)

This mathematizes the Pauli principle. It also makes Taylor expansions splendidly easy,
because each such Taylor series terminates after the linear piece:

f(θ) = A+Bθ (336)

where A,B are constants.

An immediate question comes to mind after defining Grassmann variables: how do we
define integration? Differentiation? The most physically useful definition for integration,
also motivated by mathematics, has proven to be∫

dθ = 0∫
dθθ = 1 (337)

In cases where there are multiple θα, such as would occur in models with extended super-
symmetry, we would have ∫

dθαθβ = δαβ (338)

How about the ordering of integration? We do have to be extremely careful about minus
signs for Grassmann variables, because they anticommute. Define∫

dθ

∫
dη · η · θ = +1 (339)

This definition amounts to a choice of sign convention, but it matters physically that we
make this same choice consistently.

How about complex Grassmann variables?

(θη)∗ = η∗θ∗ (340)
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This behaviour is easy to remember because it smells a lot like matrices. Also,∫
dθ∗dθ θ θ∗ = +1 (341)

How about derivatives? How do we define the ordering of a Grassmann derivative, con-
sistent with the anticommutation property of Grassmann variables? We will pick the same
convention as Peskin & Schroeder: the one in which derivatives are defined as left deriva-
tives:

d

dη
(θη) = − d

dη
(ηθ) = −θ (342)

Note that ∂/∂η is a Grassmann object itself, so must obey the usual anticommutation
property in addition to behaving like a derivative.

One of the most fun parts of using Grassmann fields for modelling relativistic fermion
fields is realizing how dead-simple Gaussians become. Because Taylor expansions truncate
so early owing to the anticommutation property of Grassmann fields, we have

exp (−θ∗bθ) = 1− θ∗bθ + 0 (343)

Therefore, ∫
dθ∗dθe−θ

∗bθ =

∫
dθ∗dθ (1− θ∗bθ) = b (344)

by the rules of Grassmann integration and the anticommuting property.
In doing Feynman path integrals to find correlation functions of physical fields, we needed

to insert fields into the integrand. So let us consider for instance∫
dθ∗dθ θ θ∗e−θ

∗bθ

=

∫
dθ∗dθ θ θ∗ (1− θ∗bθ)

=

∫
dθ∗dθ θ θ∗ = 1 (345)

Compare this to the result we had obtained just above. Looking carefully, we notice that the
Gaussian integral with θθ∗ in the integrand brings down an extra factor of (1/b) compared
to the case without. This echoes closely what happens for scalar fields, as you can check by
reminding yourself of how to perform bosonic Gaussian integrals.

There is a spin-half fermion analogue of the functional determinant formula we obtained
earlier for spin-zero bosons, so let us derive it. Consider the following quantity for an
invertible matrix Bij: (∏

i

∫
dθ∗i dθi

)
exp (−θ∗iBijθj) (346)

In the diagonal basis, Bij has eigenvalues {bi}. Therefore, the value of the above quantity is

∏
i

∫
dθ∗i dθi exp

(
−
∑
i

θ∗i biθi

)
=
∏
i

bi = det (B) (347)
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I have written out the Einstein summation convention indices explicitly here, as the meaning
of the repeated indices could otherwise be read as ambiguous.

We can rewrite this formula as∏
i

∫
dθ∗i dθie

−θ∗Bθ = [det (B)]+1 (348)

Notice that something remarkable has happened here: we have obtained a very similar
expression to what we found for the functional determinant involving scalar fields! The only
difference is that the determinant appears to the +1 power rather than −1

2
.

As you should explicitly check, it is straightforward to show that with multiple θj the
analogous expression is(∏

i

∫
dθ∗i dθi

)
θkθ
∗
` exp (−θ∗iBijθj) = [det(B)]+1 (B−1

)
k`

(349)

The main idea that goes into showing this is just the paragraph at the end of the previous
subsection.

Another interesting formula may be obtained by considering an N × N antisymmetric
matrix A and evaluating∫

dnη e
1
2
Aijηiηj = εa1···aNAa1a2 · · ·AaN−1N

≡ Pf[A] (350)

where Pf[A] is known as the Pfaffian of the antisymmetric matrix A. It is defined to be zero
if N is odd but, as we see here, is definitely nonzero for even N .

6.2 Generating functional with sources for Dirac fields

From earlier in our physics training, we are familiar with Dirac fields ψ(x) satisfying

(i∂/−m)ψ = 0 (351)

which follows from the Dirac action

S =

∫
dDx

[
ψ̄ (i∂/−m)ψ

]
=

∫
dDx

[
i

2
ψ̄
←→
∂/ψ −mψ̄ψ

]
(352)

where in the second expression we used an integration by parts to symmetrize the action in
ψ̄, ψ.

In order to write down the fermionic Feynman path integral, we will need to make ψ(x)
a Grassmann field:

ψ(x) :=
∑
i

ψifi(x) (353)

where ψi are Grassmann number coefficients and {fi(x)} are a set of spinor-valued basis
functions of spacetime coordinates.

This expansion is fundamentally different than what you write down in canonical quan-
tization, where the field is expanded in terms of Fourier modes with operator coefficients
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obeying canonical anticommutation relations. Here, we have Grassmann number coefficients,
not operator coefficients.

The definition of correlation functions for spin-1
2

fermions goes over in pretty direct
analogy to what you would expect based on experience with FPIs for scalar fields. There are
in particular no gauge freedom subtleties here, so we do not yet have to touch the concept
of Fadeev-Popov ghosts.

Let us consider the two-point function

〈0|T
{
ψ(x1)ψ̄(x2)

}
|0〉 =

∫
Dψ̄Dψ ψ(x1)ψ̄(x2) exp

[
i
∫
dDx ψ̄ (i∂/−m)ψ

]∫
Dψ̄Dψ exp

[
i
∫
dDx ψ̄ (i∂/−m)ψ

] (354)

This can be evaluated using our formulæ above, including (349). In Fourier space, the result
is:

〈0|T
{
ψ(x1)ψ̄(x2)

}
|0〉 = SF (x1 − x2)

=

∫
dDk

(2π)D
i e−ik·(x1−x2)

(k/−m+ iε)
(355)

Suppose we are interested in doing rather more than just simple free field theory for our
fermionic spin-half fields. As we found for scalar fields, by far the simplest way to extract
the correlation functions is to use the method of the functional source. We therefore need
to ape the source concept for fermions.

Since any animal appearing in the action (a scalar under Poincaré group transforma-
tions) had better be bosonic in nature, we define a new fermionic generating functional with
fermionic sources for ψ, ψ̄ denoted η̄, η:

Z[η̄, η] =

∫
Dψ̄ψ exp

[
i

∫
dDx

{
ψ̄ (i∂/−m)ψ + η̄ψ + ψ̄η

}]
i.e. Z[η̄, η] =

∫
Dψ̄DψeiS[ψ̄,ψ]ei

∫
dDx(η̄ψ+ψ̄η) (356)

What is the physical reason why we need sources for both ψ and ψ̄? Does that not constitute
overcounting? No, it does not. In four dimensions, Dirac fermions have four off-shell and
two on-shell components. (In other dimensions, we get a different power of two, 2[D/2],
halved on-shell.) Since we plan to be handling full off-shell physics at quantum loop level in
perturbation theory, we do not want to make any silly assumptions about fields appearing
in loops being on-shell. That is why we carry around the full η, η̄ baggage: it is physically
essential.

As for scalar fields, note that this generating functional Z[η̄, η] is linear in the sources.
The mathematical bonus of this physically motivated definition is that we can easily go
about evaluating it just by completing the square! Check for yourself that the answer is:

Z[η̄, η] = Z0 exp

(
−
∫ ∫

dDx dDy η̄(x)SF (x− y)η(y)

)
(357)

where Z0 is defined to be the generating functional evaluated at η̄ = 0 and η = 0.
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Using information from earlier in this section concerning Grassmann derivatives, we have,
mimicking the scalar case,

〈0|T
{
ψ(x1)ψ̄(x2)

}
|0〉 =

{
1

Z0

(
−i δ

δη̄(x1)

)(
+i

δ

δη(x2)

)
Z[η̄, η]

}∣∣∣∣
η̄=0 ,η=0

(358)

Note the −i in the factor −iδ/δη̄(x1) which pulls down a ψ(x1); that is necessary to keep
our definitions of Grassmann integrals and derivatives consistent. Likewise with the +i in
the factor +iδ/δη(x2) which pulls down a ψ̄(x2) from the exponential. Higher correlation
functions would of course also be obtained by iterating this concept.

6.3 Weyl and Majorana fields

Weyl fermions are chiral. They can be defined in any even dimensional spacetime, where it
is possible to define γD+1 in analogy to how we defined γ5 in D = 4. (In odd dimensions, the
product of all γ matrices ends up being proportional to the identity, by Schur’s Lemma.) We
will now restrict to D = 4 to save notational baggage. Nota bene: interested readers should
consult e.g. the relevant appendix in the Polchinski string theory texts for a great rendition
of how to analyze fermion representations in arbitrary spacetime dimension D. The oscillator
representation discussed there, built out of pairs of γ matrices and their anticommutation
relations, provides a nice physical way to understand why the general fermion representations
have dimensionality 2[D/2]. Putting the restriction on the fermion that it be chiral reduces
the dimensionality to the Weyl one: 2[D/2]−1.

Consider a left-handed Weyl field; this is a representation of Lorentz which transforms as
(1

2
, 0) under SU(2)L×SU(2)R. It is notationally traditional to denote this field as νa. Right-

handed Weyl fields transform as (0, 1
2
) and have indices that are traditionally dotted: νȧ.

As you should check, the Levi-Civita symbol provides a Lorentz-invariant product: νaνbε
ab.

Because of this, we can raise and lower indices using ε:

εabνb = νa

εabν
b = νa

εabεbc = δac (359)

This is specific to SU(2).
Suppose we want to tensor two Weyl representations together in an attempt to build a

Lorentz-invariant action involving derivatives. In that case, we would need a Clebsch-Gordan
coefficient to connect the two Weyl representations to the vector (1

2
, 1

2
) representation. The

C-G roles are played by the following vectors which are defined in terms of Pauli σi matrices
as {

σµ
aḃ
} = {1,+~σ

}
aḃ{

σ̄µ
ḃa
} = {1,−~σ

}
ḃa

(360)

This permits writing down the Weyl lagrangian:

LW =
1

2
i(ν∗)ḃ(σ̄µ)ḃa∂µν

a + h.c. (361)
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The story for the right-handed Weyl fields is identical except with right-handed dotted
spinors traded for left-handed undotted spinors and σµ traded for σ̄µ.

Note that the Weyl lagrangian is invariant under a phase shift of ν. The corresponding
conserved quantity is, for free particles, helicity.

Weyl fields are massless. We discussed why when we talked about the Pauli-Lubański
vector W µ, quadratic Casimirs of Lorentz C1,2, the Little Group of pµ and helicity h. Here,
h = 1

2
.

Since the Dirac field is the direct sum (0, 1
2
)⊕ (1

2
, 0), it makes sense to define

(γµ) ≡
(

0 σµ

σ̄µ 0

)
(362)

Majorana fields are real. The ability to define Majorana spinors is, however, not present
in all spacetime dimensions. The mathematics behind how this works is known as the Clif-
ford algebra. All physically important properties in signature (s, t) spacetime in D = s + t
dimensions turn out to follow from the structure of (s−t) mod 8. A mathematically oriented
discussion of this can be found in
http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf. I also liked a lit-
tle textbook called “The Spinorial Chessboard” the summer before grad school.

There are different kinds of Majorana conditions. For definiteness, let us work in one
timelike and d spacelike dimensions. Then the Majorana condition requires (s − t) mod 8
= 6, 7, 0, while the symplectic Majorana condition requires (s−t) mod 8 = 2, 3, 4. Majorana-
Weyl spinors occur when both Weyl and Majorana spinors are defined, i.e. in D = s + t
such that (s − t) mod 8 = 0. This includes the cases D = 1 + 1 and D = 1 + 9 relevant
to worldsheet and spacetime formulations of string theory. Similarly, symplectic Majorana-
Weyl spinors occur when both Weyl and Symplectic Majorana spinors are defined, i.e. when
(s− t) mod 8 = 4.
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7 Functional Quantization for Spin One

Only for massless spin one gauge fields is there a gauge invariance of the free action. The
massless case is therefore our focus, as ensuring the FPI is defined in the face of gauge
invariance is more technical than doing it for the massive case.

7.1 U(1) QED and gauge invariance

Our basic quantum field for the spin-one massless gauge field is Aµ(x). The field strength
Fµν is not a fundamental Lagrangian field; it is Aµ alone which has that status. The field
strength, a derived quantity, is defined for U(1) by

Fµν ≡ ∂µAν − ∂νAµ (363)

which is gauge-invariant. The action for Aµ is

SU(1) =

∫
dDx

(
−1

4
F µνFµν

)
(364)

We can rearrange this action via an integration by parts, to make it easier to pick off the
Feynman propagator for the photon by eye:

SU(1) =

∫
dDx

(
−1

4
F µνFµν

)
=

∫
dDx

[
+1

2
Aµ
{
ηµν∂2 − ∂µ∂ν

}
Aν
]

(365)

Since this is a teensy bit cumbersome in position space, we can rewrite it in momentum
space:

SU(1) =

∫
dDk

(2π)D
1

2
Ãµ(k)

[
−ηµνk2 + kµkν

]
Ãν(k) (366)

Is this all we need to worry about? It turns out that the answer to this is an emphatic
no. The reason for our need to be careful is (da-daaa!): gauge invariance.

Recall from your previous experience that the EM field has a special property: S[Aµ] is
invariant under gauge transformations leaving the field strength invariant:

Aµ(x)→ Aµ(x)− ∂µα(x) (367)

where α(x) is an arbitrary scalar function. If we had matter field(s) Ψ of charge q coupled
to our U(1) gauge field, then they would be rotated under U(1) gauge transformations as
Ψ→ eiqα(x)Ψ.

The physical consequences of this gauge invariance are (at least!) twofold: (a) Green’s
functions become ill-defined, and (b) the FPI becomes ill-defined, because simply integrating
over all field configurations näıvely overcounts by an infinite amount! Let us now work to
see how this comes about. We will then end up this week’s discussion by showing how to
fix this overcounting and the gauge invariance in one fell swoop known as the Fadeev-Popov
Procedure.
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Let us look back to the form of the action we wrote above, (366). Notice that if

Ã(k) = c kν α(k) (368)

then something catastrophic occurs: the operator [−ηµνk2 + kµkν ] annihilates it! Expressing
this another way, if we write the Green’s function equation as[

−ηµνk2 + kµkν
]
G1
νλ(k) = iδµλ (369)

then it is clear that the Green’s function as written has zero eigenvalues. The matrix
[−ηµνk2 + kµkν ] is singular. Oops!

7.2 Fadeev-Popov Procedure: Abelian case

Fadeev and Popov realized that it is possible to write down a well-defined Feynman Path
Integral for gauge fields, by using a clever mathematical trick which effectively “damps”
the out-of-control overcounting emanating from gauge invariance, giving rise to something
physically reasonable.

To begin the F-P story, we introduce a new animal known as the gauge fixing function
G(A). (Note that this G has nothing to do with the Green’s function; you will know this by
its index structure.) An example would be

G(A) = ∂µA
µ in Lorentz gauge (370)

If we then insist on imposing G(A) ≡ 0, this will restrict field configurations in the path in-
tegral over field space to take account of only those gauge fields obeying the gauge condition.
This will be expressed mathematically shortly via a δ(G(A)).

Consider the following reprentation of 1:

1 =

∫
Dα(x)δ(G(A)) det

(
δG(A(α)

δα

)
(371)

where
A(α)
µ (x) = Aµ(x)− ∂µα(x) (372)

This formula is just the generalization of the familiar fact that δ(ax) = (1/a)δ(x).
We now insert this unity factor into the gauge field FPI. In Lorenz gauge, it is

1 =

∫
Dα(x)δ(GL(A)) det

(
−∂2

)
(373)

In obtaining this expression, we used the fact that

det

(
δ

δα
∂µA(α)

µ

)
= det (−∂µ∂µα) (374)

The fortunate accident for U(1) is that this expression is independent of the gauge field!
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Therefore, for our FPI we can write

ZU(1) =

∫
Dα

∫
DAeiS[A]δ(G(A)) det

(
δG(A(α))

δα

)
=

∫
Dα det

(
δG(A(α))

δα

)∫
DAeiS[A]δ(G(A)) (375)

Now let us look back to our gauge transformation (367). Note that it is, in field terms, just
a shift of the gauge field Aµ(x). Accordingly,

DA = DA(α) (376)

Also, of course,
S[A(α)] = S[A] (377)

by gauge invariance. Therefore, in our FPI, we could just as well pick A
(α)
µ as our variable

of functional integration as Aµ itself! This enables us to write

ZU(1) =

∫
Dα det

(
δG(A(α))

δα

)∫
DA(α) eiS[A(α)] δ(G(A(α)))

=

∫
Dα det

(
δG(A)

δα

)∫
DAeiS[A] δ(G) (378)

as A is just a dummy variable of integration in the FPI.
Now, our determinant in Lorenz gauge does not actually depend on α, so the factor∫

Dα becomes a multiplicative infinite constant out front. This will cancel in all physical
correlation functions. This decoupling is special to U(1); we will find that for all other
(non-Abelian) gauge theories the Fadeev-Popov ghosts do not decouple from the physical
scattering amplitudes. It is actually critical for gauge invariance that they be involved; they
do the job of “bookkeeping”.

The next step is a very important one. Peskin & Schroeder gloss over this point as if it
is obvious, which it is not. What they decide to do, in order to write down a well-defined
FPI for U(1) gauge theory, is to restrict to

G(A) = ∂µA
µ − ω(x) (379)

and insert a Gaussian convergence factor of∫
Dω exp

(
−i
∫
dDx

1

2ξ
ω2

)
(380)

into the FPI. The factor of −i out front here is required in D = d + 1, as can be seen by
starting from a familiar Gaussian damping factor in Euclidean space and Wick rotating to
Minkowski signature. We will return to giving a more complete understanding of the origin
this mysterious damping factor when we discuss Fadeev-Popov ghosts properly – once we
get to doing the case of non-Abelian gauge theories properly. For now, though, we will just
take the P&S version as a definition of the FPI for U(1) gauge theory:

Z = N(ξ)

∫
Dω exp

(
−i
∫
dDx

1

2ξ
ω2

)
× det

(
−∂2

)
×
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∫
Dα×

∫
DAeiS[A] δ (∂µA

µ(x)− ω(x))

=

{
N(ξ) det

(
−∂2

) ∫
Dα

}∫
DA exp

(
−i
∫
dDx

[
1

4
F µνFµν +

1

2ξ
(∂µA

µ)2

])
(381)

where in the last step we evaluated the
∫

Dω integral using the δ-function[al]. The constant
piece is physically unimportant as it cancels out of all physical correlation functions.

The upshot of this Fadeev-Popov convergence factor ‘trickery’ is that all correlation
functions get computed using not the original Maxwell action but the gauge-fixed action:

Stot = SMaxwell + Sgf (382)

where the total action includes a gauge-fixing term for Aµ(x). Interestingly, and satisfyingly,
this statement also holds true for all S-matrix elements. In Lorenz gauge, the gauge-fixing
term in the action is

Sgf,L =

∫
dDx

[
− 1

2ξ
(∂µA

µ)2

]
(383)

7.3 Gauge-Fixed Photon Action at Tree Level

Our action for the photon, in Lorenz gauge, becomes

Stot = S[A] + Sgf

=

∫
dDx

{
+

1

2
Aµ(x)

[
ηµν∂2 − ∂µ∂ν

]
Aν(x)− 1

2ξ
(∂µAµ)2

}
=

1

2

∫
dDk

(2π)D
Aµ(k)

[
−ηµνk2 + kµkν − 1

ξ
kµkν

]
Aν(k) (384)

Therefore, the equation satisfied by the Lorenz gauge Feynman propagator is[
−k2ηµν + kµkν

(
1− 1

ξ

)]
D̃ νλ
F (k) = iδ λ

µ (385)

This has the benefit of not being a singular beastie. The solution is

D̃ µν
F (k) =

−i
k2 + iε

[
ηµν − (1− ξ)k

µkν

k2

]
(386)

You should go through the algebra to check this equation, which is (I believe) typo-free. The
easiest way to show this is to (a) define the Feynman propagator for the U(1) gauge field Aµ
as

D̃F (k) =
−i

k2 + iε

[
ηµν − f(ξ)

kµkν

k2

]
(387)

and then (b) attack D̃F with the operator (−k2ηµν + kµkν(1− 1/ξ)), hoping for +iδ λ
µ , and

then (c) go through the algebra to show that f(ξ) = 1− ξ.
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7.4 Functional quantization for Yang-Mills fields: quick version

For the case of U(1) of EM, we have seen last time the danger of trying to directly path-
integrate over all possible gauge field configurations: the FPI blows up because we overcount,
foolishly treating gauge-transformed fields differently to the originals. In order to render the
path integral sensible and tame any wild oscillatory phases, we found it necessary to insert
a convergence factor. This was natural, if a tad hand-waving! We write

Z =

∫
DAµe

iS[A] ∼
∫

DĀµe
iS[A]

∫
DΛ (388)

i.e. {Aµ} is the class of all gauge potentials reachable from Āµ via a gauge transformation
parametrized by Λ(x).

Following Peskin and Schroeder, we insert a convergence factor to tame the FPI,∫
DΛ→

∫
DG exp

(
− i

2α
G2

)
=

∫
DΛ det

(
∂G

∂Λ

)
exp

(
− i

2α
G2

)
(389)

The resulting FPI is then

ZYM =

∫
DAµ

∫
DΛ exp

(
i

∫
LYM + JµAµ −

1

2α
G2

)
det

(
∂G

∂Λ

)
(390)

Let us temporarily suppress the source term for the sake of notational clarity.
How are we to cope with the functional determinant? Let us write

M =
∂G

∂Λ
(391)

as the matrix whose determinant we need for the FPI. Now look very hard at this expression.
It should eventually ring a bell.

Earlier, we derived from Grassmann integration the rule that∫
DηD η̄ exp

(
i

∫
η̄Mη

)
= [det(M)]+1 (392)

This is the key: it means that we can now write the icky Jacobian as a functional
determinant for Grassmann ‘ghost’ fields η, η̄!

Putting these facts together, we obtain the full Feynman path integral for Yang-Mills
fields

ZYM = N ·
∫

DAµDηD η̄ exp

[
i

∫ (
LYM −

1

2α
G2 − η̄Mη

)]
(393)

In this expression, G is the gauge-fixing function. The term

Lgh = −η̄Mη (394)

is known as the ghost kinetic term, while the term

Lgf = − 1

2α
G2 = − 1

2α
GAGA (395)
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is known as the gauge fixing term. Both are needed in order that physical scattering ampli-
tudes are unitary at quantum loop level.

An extremely important feature of the Fadeev-Popov ghost fields is that ghosts are
scalars: they don’t transform under Poincaré transformations. Since ghosts are scalars and
are Grassmann fields, they do not obey the spin-statistics theorem. This is not a problem
physically – the Fadeev-Popov ghosts are bookkeeping devices which appear only
in internal quantum loops, never in external legs.

7.5 Fadeev-Popov ghosts for Yang-Mills fields

The equation
GA(ABµ ) = 0 (396)

defines the gauge choice. For a compact symmetry group G , it is possible to define a gauge-
invariant measure known as the Hurwitz measure, obeying

dg = d(g′g) (397)

where g, g′ ∈ G . Physically, only the compact groups give rise to a sensible gauge-invariant
measure. We do not consider non-compact gauge groups at all in this course. Now recall
that under U transformations

Aµ → A′µ = UAµU
−1 − i

g
(∂U)U−1 (398)

where
U = exp

(
−i∆ωATA

)
(399)

Infinitesimally,
U ' 1− i∆ωATA + O(∆ω)2 (400)

so that (dg) for g ' 1 infinitesimally close to the identity has the form

(dg) =
∏
A

∆ωA ≡ d~ω (401)

AAµ → (AAµ )′ = AAµ + ∂µ∆ωA + f A
BC ABµ∆ωC (402)

Now consider the quantity ∆−1[A] defined by

∆−1[A] =

∫
D~ω δ[G(Aω)] =

∫
Dg δ[G[Ag]] (403)

where

D~ω =
∏
x

d ~ω(x)

Dg =
∏
x

dg(x) (404)
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Notice that ∆−1 is gauge invariant

∆−1[Ag] =

∫
Dg′δ[G[Agg′ ]]

=

∫
D(g′g)δ[G[Ag′g]]

=

∫
D(g′′)δ[G[Ag′′ ]]

= ∆−1[A] (405)

Then

1 = ∆[A]

∫
D~ω δ[G[Aω]] (406)

This little chappie can be inserted at will into the FPI!
Suppressing the source term, as before, we obtain

ZYM =

∫
DAµ e

iS[A] =

∫
DAµ ∆[Aµ]

∫
D~ω δ[G[Aω]]eiS[A] (407)

We next perform a gauge transformation to turn As into Aωs and then relabel the dummy
variable of integration Aω as A. After this finagle, which is just a simple consequence of
gauge invariance, there is nothing left in the integrand depending on ω. Therefore, we can
factor out the multiplicative constant

∫
Dω – it will do absolutely no violence to the physics

of our QFT if we pull it out front into the FPI normalization. This cannot affect correlation
functions, as we proved earlier in the course, and the same goes for S-matrix elements.
Therefore, we write

ZYM := N

∫
DAµ∆[Aµ] δ[G[Aµ]]eiS[A] (408)

Our next step in this exposition is to actually evaluate ∆[A], starting from our definition
of ∆−1[A]. To figure this out, we recall the infinitesimal form of gauge transformations

GA[Aω] = GA[A] +
∂GA

∂ABµ
δABµ

= GA[A] +
∂GA

∂ABµ

(
δBD∂µ + f B

CD ACµ
)

∆ωD (409)

so that

GA[Aω] = GA[A] +
∂GA

∂ABµ
(Dµ∆ω)B (410)

Then, since the δ function enforces GA[A] = 0, we obtain

∆−1[A] =

∫
D~ω δ

[
∂GA

∂ABµ
D B
µ C∆ωC

]
(411)

Now let us denote the coefficient of ∆ω in the argument of the delta function[al] by M :

∂GA

∂ABµ
D B
µ Cδ

D(x− y) ≡ MA
C(x, y)δD(x− y)
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≡ 〈A, x|M |C, y〉

∼ δGA[A(x)]

δ∆ωC(y)
(412)

and then
∆−1[A] = (detM)−1 (413)

We would also have expected this result just by eyeballing the coefficient of ∆ω in the
argument of the delta function[al] and generalizing from δ(ax) = (1/a)δ(x).

To prove this result, suppose that our gauge-fixing function GA has eigenvalues λi with
eigenfunctions f i. Then we have∑

B,y

〈A, x|M |B, y〉f iB(y) = λif iA(x)

i.e.
∑
B,y

Mab(x, y)δD(x− y)f iB(y) = λif iA(x)

so
∑
B

MAB(x, x)f iB(x) = λif iA(x) (414)

Next, we expand our infinitesimal parameters in terms of the eigenfunctions of M :

ωC(y) =
∑
i

ωif iC(y) (415)

Then ∑
B

MAB(y, y)ωB(y) =
∑
i

ωiλif iA(y) (416)

so that

∆−1[A] =

∫
DωA

∏
A

δ

[∑
i

ωiλif iA(y)

]
(417)

Now abbreviate
uA ≡

∑
i

ωiλif iA (418)

then

∆−1[A] =

∫
DuA

∂(ω1, ω2, · · · )
∂(u1, u2, · · · )

∏
A

δ(uA)

=
∂(ω1, ω2, · · · )
∂(u1, u2, · · · )

∣∣∣∣
u=0

= (λ1λ2 · · · )−1
∣∣f iA∣∣−1

= N ′ 1

λ1λ2 · · ·
= N ′ (detM)−1 (419)

where in the last line we used the fact that any weightings by f iA(x) will, when integrated
(inside the FPI), just alter the overall field-independent normalization constant out front!
Therefore, up to a physically irrelevant constant,

∆[A] = det (M) (420)
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Suppose we chose for instance the Lorenz gauge

GA[A] = ∂µAAµ (421)

As we have seen already, the gauge condition GA = 0 implies a δ[G[A]] in the FPI. Similarly,
if

GA[A] = ∂µAAµ + βA(x) (422)

where βA(x) is an arbitrary ordinary function, then the FPI integrand, as before, has a
δ[G[A]− β]. However, since this β(x) is independent of the functional field Aµ, any integral
over β will just contribute an irrelevant normalization constant out front. Inserting for
instance

exp

(
− i

2α

∫
dDx βA(x)βA(x)

)
(423)

gives

ZYM = N

∫
DAµ∆[A] exp

(
i

∫
dDx

[
LYM −

1

2α
G[A]2

])
(424)

We can now massage the ∆[A] by using our favourite Grassmann determinant trick:

∆[A] = det(M) =

∫
DηD η̄ exp

(
−iη̄AMABη

B
)

(425)

Finally, we attain

ZYM(Lorentz) = N

∫
DAµDηD η̄ exp

[
i

∫ (
LYM −

1

2α
G2 − η̄AMABη

B

)]
(426)

Therefore, the full Lagrangian for Yang-Mills gauge fields coupled to matter – including
Fadeev-Popov ghosts – is

L = Lm + LYM + Lgf + Lgh (427)

where
Lm = iψ̄D/ψ −mψ̄ψ = iψ̄A

(
δAB∂/− igA/C (TC)AB

)
ψB −mψ̄BψB (428)

with

LYM = −1

4
Tr
(
F µν
A FA

µν

)
(429)

where Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. Also,

Lgf = − 1

2α
GAGA (430)

and

Lgh = η̄A
∂GA

∂ABµ
DB
µ Cη

C (431)

This is the full Lagrangian for quantum Yang-Mills. It’s all you need to compute everything
there is to know about YM gauge fields minimally coupled to matter.
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Figure 1: Propagator for Yang-Mills fields

Figure 2: Propagator for matter fields

7.6 Lorenz gauge Feynman rules for Yang-Mills

Here, we have
GA = ∂µAAµ (432)

Also, recall that for Aµ in the Lie algebra for gauge group G , A transforms under gauge
transformations as

δAAµ = f A
BC ABµω

C + ∂µω
A (433)

Then
δGA[A] = f A

BC ∂µ
(
ABµω

C
)

+ �ωA (434)

so that our matrix in whose determinant we are interested is

MAB =
δGA

δωB
= −f A

BC ∂µACµ − fABCACµ ∂µ + δAB� (435)

Therefore, for the ghost piece of the FPI, we focus on

Z ∝
∫

DηD η̄ exp

(
−i
∫
dDx η̄A

δGA

δωB
ηB
)

=

∫
DηD η̄ exp

(
−i
∫
dDx

{
η̄A�ηA − gf A

BC

[
(η̄A∂µηB)ACµ − ∂µACµ (η̄AηB)

]})
(436)

In other words, in Lorenz gauge, F-P ghosts have Lagrangian

L Lorentz
gh = η̄A�η

A − gf A
BC

[(
η̄A∂

µηB
)
ACµ −

(
∂µABµ

) (
η̄AηC

)]
(437)

Propagators and vertices are shown in the following Fig.1-6.

Figure 3: Propagator for ghost fields
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Figure 4: Yang-Mills cubic and quartic vertices

Figure 5: ghost-YM cubic vertex

Figure 6: matter-YM cubic vertex
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7.7 BRST invariance and unitarity

You may worry that we inserted the Lgf piece of the Lagrangian rather arbitrarily. Let us
now discuss a more mathematically sophisticated approach known as the BRST method,
named for Becchi, Rouet, Stora, and Tyutin. As we will see, the form of the gauge-fixing
Lagrangian is set by the form of the ghost Lagrangian, whose definition is, in turn, clear
from the Fadeev-Popov procedure (its form is set by our friend the matrix M).

BRST noticed that if we choose the gauge transformation parameter ∆ωA(x) to be

∆ωA(x) = −ηA(x)ε , (438)

where ηA(x) and ε are both Grassmann variables and ε is a constant, then the Yang-Mills
action is invariant – provided that the field ηA(x) transforms with a particular form. The full
BRST transformation equations for matter, gauge, ghost, antighost and Lagrange multiplier
fields (Ψ, Aµ, η, η̄,Π) read:

δBRSTΨ(x) = −i(TB)ηB(x)εΨ
δBRSTA

A
µ (x) = (Dµ)ACη

Cε

δBRSTη
A(x) = −1

2
fABCη

B(x)ηC(x)ε

δBRSTη̄
A(x) = ΠA(x)ε

δBRSTΠ(x) = 0 (439)

Using the Jacobi identity satisfied by the structure constants, it is possible (although
somewhat arduous algebraically) to show that the BRST transformation squares to zero:

δ2
BRST = 0 (440)

Since the BRST operator generating these BRST symmetry transformations is nilpotent,
any term added to the action which is the BRST-variation of something will automatically
be BRST-invariant. Formally, we can write this as

Ltot = Lcl +
δBRST

δε
Ξ (441)

where Ξ is known as the gauge fermion. Choosing in particular

Ξ = η̄A
(
GA +

1

2
αΠA

)
(442)

gives

Ltot = LYM + ΠAGA +
α

2
ΠAΠA − η̄A∂G

A

∂ABµ
(Dµ)BCη

C (443)

Now, notice that ΠA(x) is an auxiliary field: it does not propagate and so can be integrated
out. After the integration over Π we obtain

Ltot = LYM −
1

2α
GAGA − η̄A∂G

A

∂ABµ
(Dµ)BCη

C (444)
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which is what we wanted to show. In other words, the form of the gauge-fixing Lagrangian
is intimately tied together with the form of the Fadeev-Popov ghost Lagrangian.

Let us switch for the remainder of this subsection to thinking in the canonical picture
of QFT in order to glean some important physical facts. As Peskin and Schroeder point
out, the structure of BRST transformations imply very nontrivial things about unitarity of
scattering amplitudes. These all originate from having a nilpotent operator Q that commutes
with the Hamiltonian H: [H,Q] = 0. To see this, let H1 be the subspace of states |ψ1〉 which
are not annihilated by the BRST operator Q, and let H2 be the subspace of states |ψ2〉 of
the form |ψ2〉 = Q|ψ1〉 for some |ψ1〉 ∈ H1. Also let H0 be the subspace of states |ψ0〉
satisfying Q|ψ1〉 = 0 but that cannot be written as the Q of any state (the states which
are BRST-closed but not BRST-exact). Having these three subspaces of the space of states
H0,H1,H2 follows directly from having a nilpotent operator which commutes with the
Hamiltonian. Incidentally, note that the subspace H2 is a rather weird subspace, as any two
states in it have zero inner product. This fact also follows directly from the nilpotency of Q.

Consider one-particle states. By inspecting the form of the BRST transformations, we
can see that in Lorenz gauge the BRST operator Q converts the forward component of the
gauge field to the ghost field. By “forward” is meant polarization vectors ε+µ (k) where

ε±µ (k) =
1√
2

(
k0

|~k|
,±

~k

|~k|

)
(445)

These obey (ε±)2 = 0 and ε± · ε∓ = 1, as well as being orthogonal to the transverse polar-
izations: ε± · εTi = 0. The transverse polarizations εTi for i = 1, 2 obey εTi · εT∗j = −δij. The
completeness relation is ηµν = ε+µ ε

−∗
ν + ε−µ ε

+∗
ν −

∑
i ε
T
iµε

T∗
iν in our mostly minus signature of

spacetime. Q also converts the antighost into a quantum of the Π field which, through the
classical equation of motion αΠA = −GA and the form of GA in Lorenz gauge GA = ∂µAAµ ,
must be a gauge boson which satisfies kµε

µ(k) 6= 0; these are the backwards-polarized gauge
bosons.

So overall, among 1-particle states, H1 contains forward-polarized gauge bosons and
antighosts, H2 contains ghosts and backward-polarized gauge bosons, while H0 contains
only the physical transverse gauge bosons. More generally, it can be shown that asymptotic
states containing ghosts, antighosts, or gauge bosons of unphysical polairzation always belong
to H1 or H2, while asymptotic states in H0 contain only transversely polarized gauge bosons.

What does all this imply about unitarity? That is fairly straightforward to see. Let |A;⊥〉
denote an external state containing no ghosts or antighosts and only physical (transverse)
polarizations of gauge bosons. We would like to show that the S-matrix for these guys is
unitary, i.e. that ∑

C

〈A;⊥ |S†|C;⊥〉〈C;⊥ |S|B;⊥〉 = 〈A;⊥ |1|B;⊥〉 (446)

Recall that H0 is the space of states |ψ0〉 such that Q|ψ0〉 = 0 but which cannot be written as
Q|λ〉 for any λ (i.e., the states which are BRST-closed but not BRST-exact). Also, we know
that [Q,H] = 0 so that any time-evolved state S|ψ0〉 is also killed by the BRST operator Q:
it takes the form

Q · S|A;⊥〉 = 0 (447)
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This implies that S|A;⊥〉 must be linear combinations of states in H0 (physical ones) and
states in H2 (BRST-exact ones). But any two states in H2 have zero inner product with
one another, and also 〈ψ2|ψ0〉 = 0 (by definition of H2). So the inner product of any two
states of that form must arise solely from the overlap of the components in H0. Therefore,

〈A;⊥ |S†S|B;⊥〉 =
∑
C

〈A;⊥ |S†|C;⊥〉〈C;⊥ |S|B;⊥〉 (448)

and so not only is the full S-matrix unitary but its restriction to the subspace H0 is also
unitary. This is the physical reason why Feynman diagrams producing pairs of gauge bosons
with unphysical polarizations must always be cancelled by diagrams producing ghosts. (c.f.
Cutkosky rules to be discussed during 1-loop renormalization of QED.) Neato!

BRST symmetry of the action (with Yang-Mills, gauge-fixing and Fadeev-Popov terms)
implies identities that are satisfied by the generating functional Z. These identities can
be used to derive identities for the connected generating functional W or for its Legendre-
transformed friend Γ. The resulting identities are usually referred to as Ward Identities. For
the case of U(1) we will discuss the Ward identities soon, when we get to 1-loop QED. The
non-Abelian counterparts are known as the Slavnov-Taylor identities and we will not have
time to develop them in this course.
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8 Renormalization and Quartic Scalar Field Theory

8.1 Length Scales

Nonlinear equations govern the long-wavelength dynamics of fluids. This hydrodynamic
description works great at long wavelengths, but is obviously a very poor one on molecular
scales, where graininess matters immensely. At long distances, the fact of complex atomic
and molecular quantum dynamics going on at short distances is physically irrelevant: fluid
mechanics does just fine as a classical theory of fluids. We do not need to know about
quantum mechanics just to compute long-wavelength physics.

Therefore, it is important to match the effective field theory – the working Lagrangian
– to the typical length scale in the problem. For instance, we would presumably rather use
density functional theory than the Navier-Stokes equation for investigating the properties
of water on nanometre scales. Equally, it would be a total waste of time to start from
the equations of quantum string theory to describe the orbit of Jupiter around our Sun.
Newtonian physics was accurate enough to land a human on the Moon, after all!

Separation of scales, in which short-wavelength physics does not affect long-wavelength
physics, is known as universality. It turns out to be a much more general phenomenon,
forming a cornerstone of the modern Wilsonian approach to understanding ultraviolet prop-
erties of loop Feynman graphs in QFTs. It is rather involved to demonstrate universality
mathematically. The basic physics idea behind it is to parametrize the effect of all possible
UV modifications of the QFT at higher energy (and shorter distance) in terms of all possible
interactions between the effective low-energy degrees of freedom. For well-behaved renor-
malizable QFTs, this will result in quantum shifts of masses and couplings at loop level. For
non-renormalizable QFTs, trying to renormalize at one more loop order generates new terms
in the low-energy effective Lagrangian, ad infinitum, giving an infinite mess of infinities.

8.2 Cutoffs

As you calculated in HW2, loop Feynman graphs typically diverge. The physical reason
why loop integrals blow up is the assumption that loop momenta k may vary from 0 to ∞.
Nobody yet knows exactly how spacetime works at short distance, especially at lengths below
the Planck scale where gravity becomes quantum mechanical. It is therefore preposterous
to claim that any given QFT will be valid all the way to k = ∞. This is one of the main
reasons why physicists do not lose as much sleep as mathematicians in thinking about QFT
at loop level: we know that some other description of the physics must take over at very
short wavelengths.

We might more reasonably expect any given QFT to work up to some upper energy limit,
usually denoted as Λ, but not above that scale. We can think of Λ as an ultraviolet cutoff,
an energy scale beyond which detailed knowledge of short-wavelength physics is essential
to make physical predictions. At momenta much lower than the UV cutoff, the effective
Lagrangian encoding the physics of only the low-energy modes will be insensitive to the UV
physics – except through the parameters of that theory such as mass and coupling strength.
As we will see next week in some detail, if Λ is changed, then the only effect in the low-
energy effective Lagrangian is to alter the masses and couplings – a story which may include
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quantum generation of couplings that were absent in the classical theory. The low-energy
values of all masses and couplings, such as αEM(0) ∼ 1/137.036, must of course then match
onto experiment.

The physical process of making sense of mathematical infinities in loop Feynman graphs
is known as renormalization. Many different schemes are available for renormalization, and
they all depend explicitly on the details of how mathematical infinities are regulated. One
renormalization scheme involves latticizing space (or Euclidean spacetime), with a spacing
1/Λ. This lattice scheme is actually the only one known to be well-defined for gauge field
theories non-perturbatively. Perturbatively speaking, there are two useful Lorentz-invariant
schemes in common use today: Pauli-Villars, and (by far the most popular one) Dimensional
Regularization. We will use the latter. In this scheme, we will continue the dimension of
spacetime away from D = 4 and inspect infinities arising in the limit D − 4 → 0. This
is a formal manipulation only and should not be interpreted in terms of fractal dimension.
Indeed, mathematically, DR does not correspond to a positive measure. UV divergences will
show up as poles at discrete values of D.

Aspects of the discussion in the rest of this chapter and the next are taken from §9 of
the introductory QFT textbook by Lewis Ryder.

8.3 Focus: 1PI Diagrams in φ4

Significantly earlier in this course, we learned that only connected Feynman graphs contribute
to correlation functions of interest: disconnected ones cancel out between the numerator and
denominator in our formula for correlation functions in path integral quantization. We
also learned that only 1PI diagrams are needed in order to construct connected Feynman
diagrams at loop level. For example, this depicts the four-point Legendre Trees formula:

For propagator corrections there is an analogous separation into 1PI ‘nuggets’ that we
have not yet discussed. Consider all possible loop corrections to the Feynman propagator
in scalar field theory with quartic potential. This structure for the connected two-point
function G

(2)
c is depicted here:-

Notice how several of the graphs are not 1PI. Indeed, as you should check explicitly, the
complete animal, known as the dressed propagator, can be written in terms of the 1PI proper
self-energy as follows:

In this figure, the complete propagator is represented by the open-circle piece, while the
1PI contribution has the shaded interior. From this graphical expansion and basic knowledge
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of geometric series, we can see quickly that

G(2)
c (p) =

i

p2 −m2 − Σ(p)
(449)

where Σ(p) represents the proper self-energy. Accordingly, the physical mass of the φ field
will be

m2
phys = m2 + Σ(p) (450)

Note that if Σ(p) blows up in the UV, we can compensate for this in matching to physical
parameters by allowing the bare mass in the Lagrangian to be infinite, in just such a way
as to cancel the infinity from the physical quantity. We will see how this works much more
explicitly soon.

8.4 Divergences in φ4 in D = 4

What kind of divergences do we face in attempting to understand loop level physics for
general QFTs? Let us begin this analysis with examples from φ4 at one loop. The 1-loop
1PI diagrams which renormalize mass and coupling are, respectively,

Let us estimate how these integrals will blow up in the UV. For the first diagram, we
have at one loop

= g

∫
dDq

(2π)D
1

q2 −m2 + iε

→ Λ2 as q →∞ in D = 4 (451)

where Λ is the (momentum) UV cutoff. In other words, the propagator correction is quadrat-
ically divergent in four spacetime dimensions.

How about the coupling correction, also at one loop? There, we have

=
g2

2

∫
dDq

(2π)D
1

(q2 −m2 + iε)

1

[(q − q1 − q2)2 −m2 + iε]

→ log(Λ) as q →∞ in D = 4. (452)

In other words, the coupling correction at one loop is logarithmically divergent for φ4 theory
in D = 4.
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8.5 Divergences in General

We can be more systematic about this. Indeed, let us consider a general Feynman graph
for φk field theory with V vertices, E external lines, I internal lines and L loops. in D
dimensions, this gives the superficial degree of divergence D as

D = DL− 2I (453)

The first term is clearly just emanating from the integration measures for loop momenta. The
second part encodes the fact that the number of propagators involved in the loop integration
is driven by the number of internal lines.

For an L-loop diagram, with E external lines and I internal ones, momentum conservation
is required at each of the V vertices. Overall momentum conservation and momentum
conservation at each vertex yields (V − 1) relations amongst momenta. Therefore, the
number of independent momenta is

L = I − V + 1 (454)

i.e. the number of loops. So

D = (D − 2)I +D(1− V ) (455)

How does this relate to E? Well, every vertex can have either (i) an external leg connected
to one vertex, or (ii) an internal leg, which must by its nature be connected to a second
vertex as well as the first. Therefore,

kV = E + 2I (456)

Eliminating L and I in favour of D,E, V gives

D = D −
(
D

2
− 1

)
E +

[
(D − 2)k

2
−D

]
V (457)

For quartic scalar field theory in 4D, k = 4, which gives D = 4 − E, independent of V .
If instead we had φk field theory in 4D for k > 4, then D would grow with the number of
vertices V , meaning that we will sprout more and more divergent integrals as we go to higher
and higher loop order. These are known as non-renormalizable or irrelevant interactions. As
you can convince yourself by doing simple power counting in the effective Lagrangian for
the kinetic vs interaction terms, these non-renormalizable cases are also precisely the cases
for which the coupling of that interaction must have negative mass dimension. Conversely,
an interaction with positive mass dimension will have fewer divergent integrals as we go to
higher order in perturbation theory. These are known as super-renormalizable or relevant
interactions. Interactions with zero mass dimension are known as renormalizable or marginal.
In 3D, a φ6 becomes marginal while φ4 is relevant. In 2D, any φn coupling is relevant.

The structure of renormalization is quite different for irrelevant as compared to marginal
or relevant perturbations. For irrelevant ones, we will generate every interaction consistent
with the symmetries of the problem if we go to high enough order in perturbation theory.
So irrelevant interactions have no cutoff-independent physical meaning. By contrast, for
marginal or relevant perturbations, the subtraction process stops with a finite number of
operators in the effective Lagrangian.
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8.6 Weinberg’s Theorem

The superficial degree of divergence is not all there is to know about a Feynman diagram in
dimensional analysis. It also turns out to be necessary to consider the degree of divergence
of each possible subgraph, obtained by holding one of the loop momenta fixed.

We will state but not prove the following immensely powerful theorem:

A Feynman diagram converges if its degree of divergence D , together with the
degree of divergence of all its subgraphs, is negative.

Basically, what this says is that if you encounter a subgraph in your graph at some loop
order (which will necessarily have fewer loops than the whole), then as long as you properly
renormalized that subgraph at lower order in perturbation theory then you are home and
hosed.

The difficulty in proving renormalizability of a QFT to all orders in perturbation theory
is the phenomenon of overlapping divergences. To illustrate this, consider the “setting sun”
diagram in D = 4 φ4 theory in the high-k limit where mass effects are subleading:

∝
∫

d4k1 d
4k2

k2
1k

2
2(p− k1 − k2)2

(458)

This diagram has overall degree of divergence D = 8− 6 = 2. However, if we hold k1 fixed,
the integral over k2 gives D = 4 − 4 = 0 i.e. a logarithmic divergence. The same holds for
1↔ 2. So it is impossible to separate out the divergences in k1 from those in k2.

In gauge theories such as QED, gauge invariance prohibits overlapping divergences, which
is completely awesome.

8.7 Dimensional Regularization and the Propagator Correction

One of the sexiest things about Dimensional Regularization (DR) is that it is a renormal-
ization scheme which preserves Poincaré invariance and nonAbelian gauge invariance.

Since D will be continued away from D = 4, we have to be careful about counting mass
dimensions of interaction terms. We work out what the mass dimension of a field is by
insisting that its quadratic kinetic term in the effective Lagrangian remains unmolested,
pushing the dependence on any mass scale into the interaction. We have

L0 =
1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
gµεφ4 (459)

where
ε ≡ 4−D (460)

and µ is a mass scale (theory parameter) and g is dimensionless. Then

=
gµε

2

∫
dDq

(2π)D
1

q2 −m2 + iε
(461)
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Note that in the above, ε is the small parameter reminding us to use the Feynman
propagator, while ε is the amount we continue away from D = 4 in order to regularize our
infinite loop integrals. They are not at all related!

The process of evaluating loop integrals like the above, and more complex ones, can
be done by recruiting a few main conceptual steps. First, we use Feynman parameters (p
of them for p + 1 propagator denominators) to turn the denominator from a product of
propagators into a power of a single propagator-like denominator. Second, we get rid of any
linear terms in a quadratic denominator by shifting the loop momentum and completing the
square. Third, we Wick rotate to Euclidean signature to avoid getting confused about square
roots of timelike momenta. Fourth, we use spherical polar coordinates in momentum space
to actually perform the integrals. The upshot is a set of rules about momentum integrals
that you can find in Appendix A.4 in Peskin and Schroeder, starting on p.805. The main
one that we need here is∫

dDq

(2π)D
1

(q2 −∆)n
=

(−1)n i

(4π)D/2
Γ(n−D/2)

Γ(n)

1

∆n−D/2 . (462)

Gamma functions have poles at zero and negative integers. A useful math fact is

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ ψ1(n+ 1) + O(ε)

]
, (463)

where

ψ1(n+ 1) = 1 +
1

2
+ . . .+

1

n
− γ , (464)

and γ is the Euler-Mascheroni constant. Therefore,

Γ

(
1− D

2

)
= Γ

(
−1 +

ε

2

)
= −2

ε
− 1 + γ + O(ε) . (465)

Finally, recall that for a ∈ R and small ε

aε = 1 + ε ln(a) + O(ε) . (466)

Putting it all together, we obtain for the propagator renormalization

=

(
igm2

16π2

)
1

ε
+
igm2

32π2

[
1− γ + ln

(
4πµ2

m2

)]
+ O(ε) . (467)

This is supposed to depend on µ.
What does this say about the O(g) 1-loop contribution to the proper self-energy Σ(p)

introduced earlier? We have from our dimensional regularization adventure that

Σ = − gm2

16π2ε
+ (finite) + O(g2) , (468)

and therefore

Γ(2)(p) = p2 −m2

(
1− gm2

16π2ε

)
. (469)
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8.8 Vertex Correction

=
g2

2
(µ2)ε

∫
dDq

(2π)D
1

(q2 −m2 + iε)

1

[(q − p)2 −m2 + iε]
(470)

We could use a simple old standby partial fractions

1

ab
=

1

(b− a)

(
1

a
− 1

b

)
(471)

Even more useful is Feynman’s formula

1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
(472)

where a, b ∈ C and z is known as the Feynman parameter. For our 1-loop vertex correction
graph, we use this to write

1

(q2 −m2)[(q − p)2 −m2]
=

∫ 1

0

dz

[q2 −m2 − 2qp(1− z) + p2(1− z)2]2
(473)

We now shift our loop momentum to get rid of the qp term:

q′ = q + p(1− z) (474)

Using this, our integrand denominator becomes a perfect square. Relabelling q′ := q to save
on worldwide usage of ’, we obtain

=
1

2
g2µ2ε

∫ 1

0

dz

∫
dDq

(2π)D
1

[q2 −m2 + p2z(1− z)]2

=
1

2
g2µ2ε 1

√
4π

D

Γ(2− D
2

)

Γ(2)

∫ 1

0

dz
[
p2z(1− z)−m2

]D/2−2

=
ig2

32π2
µ2εΓ(2− D

2
)

∫ 1

0

dz

[
p2z(1− z)−m2

4πµ2

]D/2−2

(475)

As D → 4, Γ(2− D
2

)→ 2/ε− γ + O(ε) so that

=
ig2

32π2
µ2ε

(
2

ε
− γ + O(ε)

)
×

×
{

1− ε

2

∫ 1

0

dz ln

[
p2z(1− z)−m2

4πµ2

]}
(476)

=
ig2

16π2
µ2ε1

ε
− ig2

32π2
µ2ε ×

×
{
γ +

∫ 1

0

dz ln

[
p2z(1− z)−m2

4πµ2

]}
(477)
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The Mandelstam variables are

s = (q1 + q2)2

t = (q1 + q3)2

u = (q1 + q4)2 (478)

The integrand in our above expression is

F (s,m, µ) =

∫ 1

0

dz ln

{
sz(1− z)−m2

4πµ2

}
(479)

is a function only of (q1 + q2)2 and m2, as well as the renormalization scale µ . Note that
the argument of the logarithm develops a branch cut when (q1 + q2)2 = 4m2. This is the
harbinger of on-shell pair production.

In order to find the full 1-loop vertex correction, we amputate the external legs,

Γ(4)(p1, . . . , p4) = G(2)(p1)−1 . . . G(2)(p4)−1G(4)(p1, . . . , p4) (480)

and put the s-channel diagram we just computed together with the t-channel and u-channel
analogs. We obtain

Γ(4)(pi) = −igµε
(

1− 3g

16π2ε

)
−
[
ig2µε

32π2
{3γ + F (s,m, µ) + F (t,m, µ) + F (u,m, µ)}

]
(481)
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9 Callan-Symanzik equation and Wilsonian Renormal-

ization Group

9.1 Counterterms

Previously, we discovered that a 1-loop divergence in a Feynman graph for φ4 scalar field
theory appears in dimensional regularization as a 1/ε pole as ε = (4 − D) → 0. The
physical antidote to this unpleasant mathematical fact is to add to the Lagrangian an equal
and opposite counterterm set to kill the pole in 1/ε. These counterterms are denoted by
Feynman graphs with one fewer loop order and with a circled-x:

Why does this idea work? For our scalar QFT, let us write counterterms as10

LCT = δZ
1

2
(∂φ)2 − δm

m2

2
φ2 − δg

µε

4!
φ4 , (482)

Then note that we can write the full Lagrangian of our theory, known as the bare La-
grangian, as a sum

LB = L0 + LCT =
1

2
(1 + δZ) (∂φ)2 − 1

2
m2 (1 + δm)φ2 − (1 + δg)

gµε

4!
φ4 . (483)

This can be put in a more familiar looking form

LB = 1
2

(∂φB)2 − 1
2
m2
Bφ

2
B −

gB
4!
φ4
B (484)

by defining renormalized fields and couplings φ,m, g in terms of the bare fields and
couplings φB,mB, gB via

φB =
√
Zφ φ , Zφ = (1 + δZ) (485)

mB = Zmm, Z2
m =

(1 + δm)

(1 + δZ)
(486)

gB = Zggµ
ε , Zg =

(1 + δg)

(1 + δZ)2
(487)

A QFT is said to be renormalizable if LCT is composed of terms of the same type as were
originally present in the Lagrangian, and we see that very explicitly here.

Note: the Minimal Subtraction (MS) renormalization scheme is defined by keeping only
the pole terms in the relation between renormalized and bare fields and parameters. The MS
scheme is a modification of MS designed to get rid of a bunch of transcendental numbers,
allowing just enough of a finite part to get rid of the transcendentals.

10δZ is zero here only to one-loop. Note that our conventions for δm and δg differ from those in P&S.
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9.2 Callan-Symanzik Equation

Recall that we had to introduce an energy scale µ in order to take care of the engineering
dimensions of the coupling for our scalar field theory in D dimensions. Let us consider the
logarithmic derivative µ∂/∂µ of pertinent vertex functions. An unrenormalized vertex has
no dependence on renormalization scale µ because it has no knowledge of the renormalization
procedure. Using this and the conventions above for wavefunction renormalization, we see
that the renormalized vertex obeys

µ
∂

∂µ

{
Z
−n/2
φ Γ(n)(pi; g,m, µ)

}
= 0 . (488)

Therefore, the renormalized vertex obeys the equation[
−nµ ∂

∂µ
ln
√
Zφ + µ

∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m

]
Γ(n)(pi; g,m, µ) = 0 (489)

It is traditional to define

β(g) = µ
∂

∂µ
g

γ(g) = µ
∂

∂µ
ln
√
Zφ

mγm(g) = µ
∂

∂µ
m (490)

from which it follows immediately that[
µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) +mγm(g)

∂

∂m

]
Γ(n)(pi; g,m, µ) = 0 (491)

This is known as the Callan-Symanzik equation and dictates how the renormalized vertex
runs with renormalization [energy] scale µ. β(g) is known as the beta function of the
coupling “constant” g while γ are the anomalous dimensions.

We can write down an alternate equation expressing the invariance of Γ(n) under scale
transformations. Suppose that we scale by a factor t:

p→ tp; , m→ tm; , µ→ tµ . (492)

Now, Γ(n) has mass dimension d, which in D = 4− ε dimensions is

d = D + n

(
1− D

2

)
= (4− n) + ε

(n
2
− 1
)

(493)

Then we have
Γ(n)(tpi; g,m, µ) = tdΓ(n)(pi; g, t

−1m, t−1µ) (494)

So (
t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
− d
)

Γ(n) = 0 (495)
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Eliminating µ∂Γ/∂µ using the Callan-Symanzik equation gives[
−t ∂
∂t

+ β
∂

∂g
− nγ(g) +m (γm(g)− 1)

∂

∂m
+ d

]
Γ(n)(tp; g,m, µ) = 0 (496)

This equation gives the effect of scaling up momenta by a factor t. Notice how if the beta
function and anomalous dimensions happen to vanish then the equation simply encodes the
fact that Γ has canonical dimension d, as you would have expected from plain old ordinary
dimensional analysis. Therefore, we see that quantum corrections will change the scaling
dimensions of vertices in the quantum effective action. This is a very important aspect of
loop level physics in QFT.

9.3 Fixed Points

A fixed point is a place at which the beta function vanishes, which may happen at a finite
value of the coupling. Here are a couple of scenarios (A and B) for how “RG flow” might
work in a QFT with coupling g.

Consider scenario (A) with a beta function as illustrated in the above figure. At g → g+
0 ,

β(g) is negative which is the slope for running of g. So the coupling is driven back to g0 as µ
increases. Similarly for g → g−0 . A fixed point like this is known as a UV-stable fixed point
and obeys g(µ =∞) = g0.

In scenario (B), by contrast, the beta function has opposite sign. So a fixed point at
nonzero coupling will be a stable fixed point in the direction of decreasing µ, i.e., the IR.
This case obeys g(µ = 0) = g0.
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How does it work for φ4?
Let us pretend that our 1-loop coupling renormalization is a good guide to the asymptotic

behaviour. Ignoring finite corrections, at lowest order nontrivial order we had

gB = (gµε)

(
1 +

3g

16π2ε

)
(497)

Now, we know that the coupling gB in the bare Lagrangian does not depend on µ. We can
use this to find the logarithmic derivative of g and then the beta function, which is its limit
as ε→ 0,

β(g) =
3g2

16π2
> 0 (498)

At lowest nontrivial loop order (1-loop), this has solution

g =
g0

[1− ag0 ln(µ/µ0)]
(499)

where g0 is a constant and

a =
3

16π2
(500)

Notice that the quartic self-interaction coupling increases as the renormalization scale µ
increases. In other words, this theory is not asymptotically free. Vice versa, the beta
function says that the coupling must get driven to zero in the IR, making φ4 trivial.

Gauge field theories are qualitatively different. As we will see soon, they obey symmetry-
driven identities known as Ward (Abelian) or Slavnov-Taylor (non-Abelian) identities. These
ensure that the theory is renormalizable to all orders in perturbation theory, even in a Higgs
phase. Non-Abelian gauge theories are, as you will see in your final project, asymptotically
free.

9.4 Wilsonian RG and UV cutoffs

There is a more physically solid way to understand how changing the renormalization scale
results in (a) running of couplings, and (b) generation of all terms in the quantum action
allowed by symmetry whether they were present classically or not. This is the 1970s advance
of Kenneth Wilson and remains one of the gems in the modern quantum physics literature.
The description we outline here is taken from §12.1 of Peskin and Schroeder.

A simple prescription for avoiding loop divergences in QFTs would presumably be to
avoid integrating over the high momenta which give rise to those divergences. For instance,
we could nominate to integrate only over φ(k) such that |k| ≤ Λ and impose φ(k) = 0 for
|k| > Λ. This näıve prescription is fairly close to the mark, but we do have to be careful
when putting in a hard UV cutoff like this: we live in Minkowski spacetime, which does
not have a positive definite metric. The physically correct route is to use Euclidean space
plus Wick rotation as our guide to the correct way to apply the UV cutoff in Lorentzian
signature.

Let us now write the functional integral for quartic scalar field theory. For simplicity of
exposition we shall set J = 0. Then we define our Feynman path integral as

Z =

∫
[DΦ]Λ exp

(
−
∫
dDx

[
1
2
(∂Φ)2 + 1

2
m2Φ2 +

λ

4!
Φ4

])
(501)
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where
[DΦ]Λ =

∏
|k|<Λ

dΦ(k) (502)

Divide Φ(k) into two groups: high-momentum and low-momentum modes

high momentum : bΛ ≤ |k| ≤ Λ , b ∈ (0, 1)
low momentum : |k| < bΛ (503)

Define

φ̂(k) =

{
Φ(k) , bΛ ≤ |k| < Λ
0 otherwise

(504)

Also define a new

φ(k) =

{
Φ(k) , |k| < bΛ
0 otherwise

(505)

So we have
Φ(k) = φ̂(k) + φ(k) (506)

Therefore

Z =

∫
Dφ

∫
D φ̂ exp

(
−
∫
dDx

[
1
2
(∂φ̂+ ∂φ)2 + 1

2
m2
(
φ+ φ̂

)2

+
λ

4!
(φ+ φ̂)4

])
=

∫
Dφ exp

(
−
∫
dDxL [φ]

)
×

×
∫

D φ̂ exp

(
−
∫
dDx

[
1
2
(∂φ̂)2 + 1

2
m2φ̂2+

+λ

{
1

6
φ3φ̂+

1

4
φ2φ̂2 +

1

6
φφ̂3 +

1

4!
φ̂4

}])
(507)

Note: any pieces proportional to φφ̂ vanish, by orthogonality of distinct Fourier modes.
Notice what just happened! The UV-cut-off functional integral has factored. The first

factor, as you can see above, is completely independent of φ̂.
How would we perform the path integration over the φ̂s? We would like to end up with

an expression only in terms of the lower-momentum stuff, which we would then interpret as
our theory at the lower cutoff scale bΛ. We will mostly be interested in physical systems
with m2 � Λ2 so that we can treat m2 and λ as perturbations. The case of massless fields
is somewhat trickier, as IR singularities (expressing long-range behaviour) can afflict the
physics as well. For now, we take any masses to be finite but well below the UV cutoff scale.

At leading order, the portion of the Lagrangian involving φ̂ is∫
L0 =

∫
bΛ≤|k|<Λ

dDk

(2π)D
φ̂∗(k)k2φ̂(k) (508)

Denoting Wick contractions by horizontal overbraces, we have for the two-point function
giving the propagator︷ ︸︸ ︷

φ̂(k)φ̂(p) =

∫
D φ̂ e−

∫
L0φ̂(k)φ̂(p)∫

D φ̂ e−
∫

L0

=
1

k2
(2π)Dδ(D)(k + p)Θ(k) (509)
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where we define Θ(k) via

Θ(k) =

{
1 , bΛ ≤ |k| < Λ
0 , otherwise

(510)

Peskin and Schroeder denote this correction to the φ propagator by

Let us use what we just learned to help expand the exponential in the φ̂. Terms appear
like

−
∫
dDx

λ

4
φ2
︷︸︸︷
φ̂φ̂ = −1

2

∫
dDk

(2π)D
µ2 φ(k)φ(−k) (511)

where

µ2 =
λ

2

∫
bΛ≤|k|<Λ

dDk

(2π)D
1

k2
(512)

Notice that for D > 2 this blows up at large Λ as a power law. Using the definition of a
Gamma function and recalling the area formula for spheres in higher dimensions gives

µ2 =
λΛD−2

(4π)D/2Γ(D
2

)

(1− bD−2)

(D − 2)
(513)

This would have been the kind of term we were expecting anyway, upon expansion of the
exponential in the Feynman path integration over high-energy modes. So µ2 gives a positive
correction to the mass term in L (φ).

What we have seen here is a great deal more general than the explicit example which we
just worked out. Indeed, integrating out higher-momentum modes shifts around the coupling
constants of the low-energy effective action Leff(φ)! In particular, changing the UV cutoff
makes couplings run and generates nonzero coefficients for all terms allowed by symmetry
in the low-energy effective action whether they were present classically or not. This is the
modern interpretation of renormalization à la Wilson. It is a hugely powerful idea, and forms
the basis for our modern understanding of theoretical high-energy physics and theoretical
condensed matter physics as well.

At O(λ2) there are two possible contractions arising from path integration over φ̂ modes:

The second term contributes to alteration of the coupling constant. In the limit of small
external momenta, i.e. for |kµi | � Λ ∀i, µ, the second diagram is

− 1

4!

∫
dDx ζ φ4 (514)

where

ζ = −4!
2

2!

(
λ

4

)2 ∫
bΛ≤|k|<Λ

dDk

(2π)D

(
1

k2

)2

= − 3λ2 ΛD−4

(4π)D/2Γ(D
2

)

(1− bD−4)

(D − 4)
(515)
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In the limit that D → 4 this becomes

ζ → − 3λ2

16π2
ln(

1

b
) (516)

If we were to put external momenta back into the equation, rather than neglecting them
compared to the UV cutoff, we would generate additional terms of the form

− 1

4

∫
dDx η φ2 (∂φ)2 (517)

and higher powers in the Taylor expansion in external momenta.
The message is that integrating out the φ̂ produces (generates) all possible interactions of

fields φ and their derivatives consistent with symmetries of the QFT. Then

Leff [φ] = 1
2
(∂φ)2 + 1

2
m2φ2 +

λ

4!
φ4 + (connected diagrams) (518)

There is more. We can figure out using the same kind of procedure how changing Λ
changes the couplings of the theory. This is known as the RG (renormalization group).

So far, we have seen that at energies well below the UV cutoff our theory is defined via

Z =

∫
[Dφ]bΛ exp

(
−
∫
dDxLeff

)
(519)

where

Seff =

∫
dDx

{
1

2
(1 + ∆Z)(∂φ)2 +

1

2
(m2 + ∆m2)φ2+

+
1

4
(λ+ ∆λ)φ4 + ∆C(∂φ)4 +Dφ6 + · · ·

}
(520)

Let us now get rid of the annoying factors of b via a field redefinition. First, we write

k′ :=
1

b
k , x′ := bx (521)

Then we have that |k′| ∈ [0,Λ). Further,

Seff =

∫
dDx′

1

bD

{
1

2
(1 + ∆Z)(∂′φ)2 b2 +

1

2
(m2 + ∆m2)φ2+

+
1

4
(λ+ ∆λ)φ4 + ∆C(∂′φ)4 b4 +Dφ6 + · · ·

}
(522)

This permits us to define
φ′ :=

√
b2−D(1 + ∆Z)φ (523)

Then

Seff =

∫
dDx′

{
1

2
(∂′φ′)2 + +

1

2
(m′)2(φ′)2 +

1

4
λ′(φ′)4 + C ′(∂′φ′)4 +D′(φ′)6 + · · ·

}
(524)
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So our new parameters in our low-energy effective Lagrangian Leff are:

(m′)2 = (m2 + ∆m2)
1

(1 + ∆Z)
b−2

(λ′) = (λ+ ∆λ)
1

(1 + ∆Z)2
bD−4

C ′ = (C + ∆C)
1

(1 + ∆Z)2
bD

D′ = (D + ∆D)
1

(1 + ∆Z)3
b2D−6 (525)

Let us summarize this extremely important idea:

Cranking down the
UV cutoff scale Λ

⇒
Integrating out fur-
ther high-momentum
modes

⇒ FLOW in the space
of Lagrangians!!

Note: the RG describing the flow of couplings at the quantum level is mathematically
a semigroup, not a group. The reason is that although two lowerings of Λ can be sensibly
composed, the transformations do not satisfy all of the group axioms. For this reason,
“renormalization group” is a misnomer, and I prefer to call it just the “RG”. For a more
in-depth discussion, see e.g. Section 9.4 of the text by Tom Banks.

How should we interpret a fixed point? This is simply a point in (multi-dimensional)
coupling space at which the RG transformations do not alter the coupling(s). For example,
in φ4 field theory, one (trivial) fixed point has

L0 = 1
2
(∂φ)2 , m2 = 0 , λ = 0 , C = 0 , D = 0 . (526)

It is generally useful to study the QFT in the vicinity of the fixed point, to see what kind of
flow occurs there. In the vicinity of L0, Peskin and Schroeder argue that it is valid to ignore
the ∆m2,∆λ pieces coming from loop corrections and just focus on the lowest nontrivial
order in small quantities. Then

(m′)2 =
m2

b2
, λ′ = λbD−4 , C ′ = CbD , D′ = Db2D−6 , etc (527)

How about power counting in this context?

• Any term in Leff that comes with a negative power of b will grow as b is reduced, i.e.
at low-energy. These are called relevant operators.
• Any term in Leff that comes with no power of b remains unmolested. These are called

marginal[ly relevant] operators.
• Any term in Leff that comes with a positive power of b will shrink at low-energy. These

are called (surprise!) irrelevant operators.

There exists in D < 4 a fixed point for quartic scalar QFT at nonzero λ known as a
Wilson-Fisher fixed point. It exists only for D < 4 and does not apply in either D = 4 or
D > 4. This is intimately connected to the observation we made earlier that φ4 theory in
D = 4 is trivial.

105



106



10 One loop renormalization of QED

10.1 Power counting

By dimensional analysis, the superficial degree of divergence D of a Feynman graph for QED
must be

D = DL− 2Pi − Ei (528)

where D is the spacetime dimension, L is the number of loops, Pi is the number of internal
photon lines and Ei is the number of internal electron lines. The relative factor of 2 between
photon and electron internal lines arises because photon propagators scale as 1/k2 while
fermion propagators scale as 1/k.

The number of independent loop momenta for integration is

L = (# internal lines )− n+ 1 (529)

because momentum must be conserved at each vertex (−n) and also overall momentum must
be conserved as well (+1). Now, how many internal lines are there? Clearly, this number
must be the sum of the number of internal photon lines and the number of internal electron
lines, because there are no other quantum fields in the theory:

L = Pi + Ei − n+ 1 (530)

Next, let n be the number of vertices, Pe be the number of external photon lines, and Ee
be the number of external electron lines. Consider any given vertex in a loop diagram for
QED. Each vertex has exactly two electron legs and exactly one photon leg. If an electron
leg is external, it is counted once, or, if it is internal, it is counted twice. (This is a simple
consequence of the topology of Feynman diagrams. If you are in any doubt, draw an arbitrary
Feynman graph in this theory and count its internal and external legs.) Therefore

2n = Ee + Ei (531)

For photons the analogue is
n = Pe + Pi (532)

Eliminating internal loop quantities in favour of external ones gives

D = D +

(
D

2
− 2

)
n−

(
D − 1

2

)
Ee −

(
D − 2

2

)
Pe (533)

For any given theory to be renormalizable, we need for D to be independent of n, oth-
erwise we would keep generating new counterterms at each order in perturbation theory.
When D = 4 we get for QED

DD=4
QED = 4− 3

2
Ee − Pe (534)

which is, happily, n-independent. However, in D < 4 QED is super-renormalizable and
strongly coupled in the IR. By contrast, in D > 4, QED (as well as generic gauge field
theory, in fact) is non-renormalizable and ill-behaved in the UV.
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Our next task in attempting to regularize UV infinities in QED and renormalize the
theory, we have to chase down where the divergences are. We will focus only on one-loop
renormalization in this course, which simplifies our task. If we sit down and write out all
possible Feynman diagrams that could be divergent in D = 4 QED, we will find a handful.
But QED possesses symmetries including CPT, and this ends up reducing the number of
possible one-loop divergences in the theory. The result of these symmetry considerations is
that there are only three primitively divergent diagrams at one loop:

For the photon energy a.k.a. vacuum polarization diagram,

iΠµν(k) = (−ie)2

∫
dDx

(2π)D
Trγµ

i

(l/−m)
γν

i

(l/+ k/−m)
(535)

This fellow has Ee = 0 and Pe = 2 so D = 2 i.e. it is superficially quadratically divergent.
For the electron self-energy, in Feynman gauge we have

− iΣ(k) = (−ie)2

∫
dDx

(2π)D
γµ

i

(l/− k/−m)

−iηµν
l2

γν (536)

This graph has Pe = 0 and Ee = 2 so D = 1. In other words, this one is superficially linearly
divergent.

Both the photon self-energy and the electron self-energy graphs will actually turn out to
be logarithmically divergent.

The vertex graph at one loop is

− ieΛµ(k, q, k + q) = (−ie)3

∫
dDx

(2π)D
−iηρσ

(l + k)2
γρ

i

(l/− q/−m)
γµ

i

(l/−m)
γσ (537)

For this guy, we have Ee = 2 and Pe = so D = 0. This superficial degree of divergence will
turn out to be the same as the actual degree of divergence: logarithmic.

Now we switch to the hunt for logarithmic divergences!
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10.2 Photon self-energy a.k.a. Vacuum Polarization

Consider the photon self-energy diagram, which is also known as the vacuum polarization.

We have, in dimensional regularization,

Πµν(k) = iµ4−De2

∫
dDl

(2π)D
Tr

[
γµ

1

(l/−m)
γν

1

(l/− k/−m)

]
= ie2µ4−D

∫
dDl

(2π)D
Tr [γµ(l/+m)γν(l/− k/+m)]

(l2 −m2)[(l − k)2 −m2]
(538)

We introduce a Feynman parameter z to gather the two propagator denominators together
into one denominator factor, and define a shifted loop momentum l′ by

l′ = l − kz . (539)

Then

Πµν(k) = ie2µ4−D
∫ 1

0

dz

∫
dDl′

(2π)D
Tr [γµ(l/′ + k/z +m)γν(l/

′ − k/(1− z) +m)]

[(l′)2 −m2 + k2z(1− z)]2
(540)

Since numerator terms odd in l′ do not contribute by symmetry, and since the trace of
any gamma matrix is zero, the numerator becomes

NΠ = {l′κl′λ − kκkλz(1− z)}Tr(γµγνγκγλ) +m2Tr(γµγν) (541)

The Peskin and Schroeder appendices contain all dimensional regularization formulæ that
we might need for one-loop renormalization of QED. The ones we will use the most in the
following are

γµγµ = ηµµ = D
γµγνγµ = (2−D)γν

γµγνγργµ = 4ηνρ + (D − 4)γνγρ

γµγνγργσγµ = −2γσγργν + (4−D)γνγργσ

Tr(γµγν) = 4ηµν

Tr(γµγνγργσ) = 4(ηµρηνσ − ηµνηρσ + ηµληνσ) (542)

The rationale behind these formulæ is that gamma matrix traces not involving γ5 are unal-
tered from their D = 4 versions – except for those traces involving ηµµ = D.

We will also find useful the following symmetry relations for tensor numerators in one-
loop integrals:

lµlν −→ 1

D
l2ηµν
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lµlνlρlσ −→ 1

D(D + 2)
(l2)2 [ηµνηρσ + ηµρηνσ + ηµσηνρ] (543)

Using the first of these identities, our numerator for the vacuum polarization becomes

NΠ = 4[l′κl′λ − kκkλz(1− z)](ηµκηνλ − ηµνηκλ + ηνκηµλ) + 4m2ηµν (544)

Therefore

NΠ

4
= ηµν

[
m2 − (l′)2 + k2z(1− z)

]
+ l′µl

′
ν + l′νl

′
µ − (kµkν + kµkν)z(1− z)

= 2l′µl
′
ν − 2

[
kµkν − ηµνk2

]
z(1− z)− ηµν

[
(l′)2 −m2 + k2z(1− z)

]
(545)

Here we have added and subtracted a term for clarity’s sake. Using also the symmetry
identity lµlν −→ (1/D)ηµνl2, we see that the first and third terms cancel in the integral:

Πµν(k) = 4ie2µ4−D
∫ 1

0

dz

∫
dDx

(2π)D

{
2l′µl

′
ν

[l2 −m2 + k2z(1− z)]2

− 2z(1− z)

[l2 −m2 + k2z(1− z)]2
− ηµν

[l2 −m2 + k2z(1− z)]1

}
(546)

Therefore,

Πµν(k) = −8ie2µ4−D
∫ 1

0

dz

∫
dDl

(2π)D
z(1− z)(kµkν − ηµνk2)

[l2 −m2 + k2z(1− z)]
(547)

We now use a formula from PS (A.44) for the kind of loop momentum integral we are
doing to compute the one-loop photon self-energy:∫

dDl

(2π)D
1

(l2 −∆)n
=

(−1)ni

(4π)D/2
Γ(n−D/2)

Γ(n)

1

∆n−D/2 (548)

In order to take the ε = (4 − D) → 0 limit, it is useful to know another formula from PS
appendix (A.49):

lim
D→4

1

∆2−D/2 = 1 + (
D

2
− 2) log ∆ + . . . (549)

Peskin and Schroeder also state a formula for a particular combination of factors which often
turns out to be relevant to interesting one-loop QFT calculations: (A.52). This little treasure
allows us to correctly get the 4π factor in the following:

lim
D→4

Γ(2−D/2)

(4π)D/2
1

∆2−D/2 =
1

(4π)2

[
2

ε
− log ∆− γ + log(4π) + O(ε)

]
(550)

The other useful formula which we will use multiple times is PS equation (A.51) for how to
expand a Gamma function near its poles:

Γ(x) =
(−1)n

n!

(
1

x+ n
− γ + 1 + · · ·+ 1

n
+ O(x+ n)

)
(551)

where γ is the Euler-Mascharoni constant.
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Putting all these ingredients together, we obtain finally

ΠD=4
µν (k) =

e2

2π2
(kµkν − ηµνk2)

{
1

3ε
− γ

6
−
∫ 1

0

dz log

(
k2z(1− z)−m2

4πµ2

)
+ finite

}
(552)

Note that this is proportional to the original tree-level photon propagator – we will use this
neat fact when we talk about charge renormalization.

One final remark about Πµν(k). Notice that the maximum value of z(1 − z) on the
interval z ∈ [0, 1] is 1/4, at z = 1/2. Therefore, we can see that the log function will develop
a branch cut whenever k2 > 4m2. Because the amount of energy needed to create a pair is
2m in units where c = 1, development of a branch cut actually signals pair production. This
is a nice physical consistency check on our complicated mathematical formulæ.

10.3 Electron self-energy

Consider the one loop correction to the electron propagator in QED

It takes the form
i(k/+m)

k2 −m2
[−iΣ2(k)]

i(k/+m)

k2 −m2
(553)

where the amputated part of the vertex −iΣ2(k) is given by

− iΣ2(k) = (−ie)2

∫
dDl

(2π)D
γµ

i(l/+m)

l2 −m2 + iε
γν

−iηµν

[(l − k)2 + iε]
(554)

As we did with the photon self-energy, our next step is to use the Feynman parameter
technique to collect the propagator denominators into one combined denominator so we can
do the integral. We use

1

(l2 −m2 + iε)[(k − l)2 + iε]
=

∫ 1

0

dz
1

[l2 − 2zl · k + zk2 − (1− z)m2 + iε]
(555)

Next, we complete the square and define a shifted loop momentum

l′ = l − zk (556)

Using these two identities, and doing a Wick rotation to Euclidean loop momenta, we obtain

− iΣ2(k) = −e2

∫ 1

0

dz

∫
dDlE
(2π)D

[−2(2− ε)k/+ (4− ε)m]

[l2E + ∆− iε]2
(557)

where we dropped the primes on the loop momentum, used symmetry to drop numerator
terms linear in l, and defined

∆ = −z(1− z)k2 + (1− z)m2 . (558)
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But in dimensional regularization we have∫
dDlE
(2π)D

1

(l2E + ∆− iε)2
=

1

(4π)D/2
Γ(2−D/2)

∆2−D/2)
(559)

Also,

lim
D→4

Γ(2−D/2)

(4π)D/2
1

∆2−D/2 =
1

(4π)2

[
2

ε
− log ∆− γ + log(4π) + O(ε)

]
(560)

Putting the components together, we have

Σ2(k) =
e2

(4π)D/2
Γ(2−D/2)

∆2−D/2

{
(4− ε)m− 1

2
(2− ε)k/

}
=

e2

(4π)D/2
Γ(2−D/2)

∆2−D/2

{
m(3− ε

2
) + (k/−m)(

ε

2
− 1)

}
→ e2

16π2

[
2

ε
− log(

∆

4πµ2
)− γ + O(ε)

]{
(4m− k/) + ε(

k/

2
−m)

}
=

e2

8π2
(4m− k/)1

ε
+ finite (561)

Notice how factors involving 1/ε and ε cancel in the finite part of this expression. This is
one reason why we have been very careful to keep ε-dependent pieces in the numerator!

Therefore, the electron self-energy at 1-loop modifies the electron’s inverse propagator to

Γ(2)(p) = S ′F (p)−1 = SF (p)−1 − Σ(p)

= (p/−m)− e2

8π2ε
(−p/+ 4m) + finite

= p/

(
1 +

e2

8π2ε

)
−m

(
1 +

e2

2π2ε

)
+ finite (562)

10.4 QED Vertex Correction

First, a parenthetical note. There are actually other Feynman diagrams to worry about
in QED than the UV-divergent loop contributions from self-energies or vertex corrections.
For a long-range theory like electromagnetism there are also IR-divergent diagrams, which
essentially correspond to radiating soft photons off external leg lines. We do not discuss IR
divergences here, but encourage serious students of QFT to learn what a “Sudakov log” is.

For the vertex correction in QED we are concerned with this diagram:

Getting back to our UV-divergent one-loop vertex, we have

iΛµ(k, q, k + q) = −ie2

∫
dDl

(2π)D
γρ (l/+m) γµ (l/− q/+m) γρ

[(l − k)2 + iε] [l2 −m2 + iε] [(l − q)2 −m2 + iε]
(563)
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Oh dear. We are slightly stuck here if we think in terms of techniques we used for the
two self-energy diagrams, because of the third denominator. So how do we collect three or
more denominators together? An extremely useful general formula, which can be derived by
induction as in PS p.190 (section 6.3), is:

1

Am1
1 Am2

2 · · ·Amnn
=

∫ 1

0

dz1

∫ 1

0

dz2 · · ·
∫ 1

0

dzn δ(
∑
i

zi − 1) ×

×
∏

i z
mi−1
i

[
∑

j zjAj]
∑
kmk

Γ(m1 +m2 + · · ·+mn)

Γ(m1)Γ(m2) · · ·Γ(mn)
(564)

For the three-denominator case, we need

1

[(l − k)2 + iε] [l2 −m2 + iε] [(l − q)2 −m2 + iε]
=

∫ 1

0

dxdydz δ(x+ y + z − 1)
2

D3
(565)

where
D = x[(l − k)2] + y[l2 −m2] + z[(l − q)2 −m2] + (x+ y + z)iε (566)

By changing to a new dummy variable of loop integration

l′ = (l − q) + yq − x(k − q) (567)

and using x + y + z = 1 it is possible – though boring – to show that the denominator
collapses to

D = (l′)2 −∆ + iε (568)

where
∆ = −xyq2 + (1− z)2m2 (569)

Notice that for physical scattering processes in Lorentzian signature q2 < 0 so no branch
cuts ‘plague’ us here.

Then, dropping the primes on l′, we have

Λµ(q, k, k− q) = ie2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDl

(2π)D
γν (l/−m) γµ [(l/− q/+ yq/− x(k/− q/)−m]γν

2

D3

(570)
The next step is to use symmetry to kill any terms odd in the loop momentum. We also
use the the dimensional regularization Dirac identities to cope with all the gamma matrices.
The part of the numerator quadratic in l is divergent, and has the value

Λµ(q, k, k − q) =
e2

8π2

1

ε
γµ + finite (571)

The finite piece of this ends up contributing to the anomalous magnetic moment of the
electron, but we will not chase that fact up here.

(Note: the definition of Γµ we use is such that it has an implicit factor of e, from the tree
vertex, inside. That way the one-loop correction is proportional to e2, not e3.)
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10.5 Ward-Takahashi Identities in QED

We have learned so far that for connected graphs we use W [J ], defined by

Z[J ] = exp (iW [J ]) (572)

where Z[J ] is the original generating functional. We also learned that for one particle
irreducible (1PI) graphs we focus on the quantum action, and for the case of the scalar Γ[φ]
was given by

W [J ] = Γ[φ] +

∫
dDxJ(x)φ(x) (573)

Consider now QED with its U(1) gauge symmetry. Without the gauge-fixing and ghost
terms, our Lagrangian was gauge invariant. Adding Lgf + Lgh to the story tamed the
measure of the Feynman Path Integral but made it non-gauge-invariant!! So does Z have
some secret gauge invariance? Certainly, scattering amplitudes should not depend on the
gauge chosen. Therefore, we can conclude that Z must obey some relations. These will end
up being the Ward-Takahashi Identities.

We have

Z = n

∫
DAµDψ̄Dψ exp

(
i

∫
Leff

)
(574)

where our effective Lagrangian includes the mandatory source terms:

Leff = −1

4
F µνFµν + iψ̄γµ (∂µ + ieAµ)ψ −mψ̄ψ − 1

2α
(∂µAµ)2 + JµAµ + η̄ψ + ψ̄η (575)

Suppose that we do a(n infinitesimal) gauge transformation

Aµ → Aµ + ∂µλ
ψ → ψ − ieλψ
ψ̄ → ψ̄ + ieλψ̄ (576)

By construction, the first three terms are gauge invariant. The remaining pieces are the
prime suspects: the gauge-fixing Lagrangian, the ghost Lagrangian, and the source terms.

Under (finite) gauge transformations, the FPI integrand will pick up the factor

exp

(
i

∫
dDx

[
− 1

α
(∂µAµ)∂2λ− ∂µJµ − ieλ(η̄ψ − ψ̄η)

])
(577)

For infinitesimal λ(x), this expands as{
1 + i

∫
dDx

[
− 1

α
∂2(∂µAµ)− ∂µJµ − ie(η̄ψ − ψ̄η)

]
λ(x)

}
(578)

after some integrations by parts.
Invariance of the full Z under these transformations would require, infinitesimally,{

1 + i

∫
dDx

[
− 1

α
∂2(∂µAµ)− ∂µJµ − ie(η̄ψ − ψ̄η)

]
λ(x)

}
Z = Z (579)
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for arbitrary λ(x). Therefore,[
− 1

α
∂2(∂ · A)− ∂ · J − ie(η̄ψ − ψ̄η)

]
Z = 0 (580)

Next, by the source dependence of Z[J, η, η̄], we can substitute

ψ → 1

i

δ

δη̄

ψ̄ → 1

i

δ

δη

Aµ →
1

i

δ

δJµ
(581)

This gives a functional differential equation[
i

α
∂2∂µ

δ

δJµ
− ∂µJµ − e

(
η̄
δ

δη̄
− η δ

δη

)]
Z[J, η, η̄] = 0 (582)

For physical Feynman graph applications it is typically more useful to use the connected
generating functional, so we substitute

Z[J, η, η̄] = exp (iW [J, η, η̄]) (583)

which gives for W
1

α
∂2∂µ

δW

δJµ
− ∂µJµ − ie

(
η̄
δW

δη̄
− ηδW

δη

)
= 0 (584)

The final step is to do our field Legendre transformation to get to the quantum action
Γ. Our generating functional for vertex functions Γ(n) is defined by

Γ[Aµ, ψ, ψ̄] = W [J, η, η̄]−
∫
dDx

(
JµAµ + η̄ψ + ψ̄η

)
(585)

and therefore

δΓ

δAµ(x)
= −J(x)

δW

δJµ(x)
= Aµ(x)

δΓ

δψ(x)
= −η̄(x)

δW

δη̄(x)
= ψ(x)

δΓ

δψ̄(x)
= −η(x)

δW

δη(x)
= ψ̄(x) (586)

Accordingly, our overall demand of gauge invariance for the FPI gives the condition

− 1

α
∂2∂µAµ(x) + ∂µ

δΓ

δAµ(x)
− ieψ δΓ

δψ(x)
+ ieψ̄

δΓ

δψ̄(x)
= 0 (587)

This is nice, but it doesn’t ring any bells physically! To beat this expression into some-
thing useful, we can try an old standard: [functionally] differentiating it. Specifically, we
will apply

δ

δψ̄(x1)

δ

δψ(y1)
(588)
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and then set the sources to zero and see what eventuates. Note that because Lgf does not
depend on ψ, ψ̄, the first term will vanish. Our Ward-Takahashi Identity then takes the form

− ∂

∂xµ

{
δ3[0]

δψ̄(x1)δψ(y1)
δAµ(x)

}
= +ieδD(x− x1)

δ2Γ[0]

δψ̄(x1)δψ(y1)

−ieδD(x− y1)
δ2Γ[0]

δψ̄(x1)δψ(y1)
(589)

The LHS of this expression is the derivative of the 1PI electron-positron-photon vertex,
while the RHS terms are the inverses of exact propagators!!

The physical content of our WTI equation is a lot easier to digest in momentum (Fourier)
space. So let us define∫

dDx

∫
dDx1

∫
dDy1e

i(p′·x1−p·y1−qx) δ3Γ[0]

δψ̄(x1)δψ(y1)δAµ(x)
:= ie(2π)DδD(p′ − p− q)Γµ(p, p′, q) (590)

Let us also define the exact propagator – as distinct from the bare one – by∫
dDx1

∫
dDy1e

i(p′·x1−p·y1 δ2Γ[0]

δψ̄(x1)δψ(y1)
:= (2π)DδD(p′ − p) × i(S ′F )−1(p) (591)

Now, multiply our position-space WTI by ei(p
′·x1−p·y1−q·x) and integrate w.r.t. x1, y1, x. The

resulting WTI is

qµΓµ(p, p′ = p+ q, q) = (S ′F )−1(p+ q)− (S ′F )−1(p) (592)

This momentum space WTI is the most useful version of it. Diagrammatically, we have
derived

If we take the zero-momentum limit of the momentum space WTI, we obtain

∂

∂pµ
(S ′F )−1(p) = Γµ(p, p, 0) (593)

which is known as the Ward Identity.
Ward-Takahashi identities are exact – in other words, true to all orders in perturbation

theory. So at any given order in αQED there will be nontrivial relationships between exact
propagators and vertex functions!

To see what sort of story eventuates, we can imagine all possible connected, 1PI loop
Feynman graphs built from bare propagators and vertices. Diagrammatically,
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On the other hand, for the exact propagator for the electron-positron field:

Lastly, let us work out some of the details of the lowest-order WTI. We have the bare
fermion propagator

S
(0)
F =

1

p/−m
(594)

so its inverse is (S
(0)
F )−1(p) = p/−m. The momentum derivative is, at leading order,

∂

∂pµ
(S

(0)
F )−1(p)

∣∣∣∣
LO

= γµ (595)

The question is: what sits on the other side of the WTI from this term?
We need to find the third derivative of Γ w.r.t. ψ, ψ̄, Aµ. Using the definitions of Z,W,Γ

and the knowledge that at lowest nontrivial order the inverse propagators are Γ(2)s gives

δ3Γ

δψ̄(x1)δψ(y1)δAµ(x)
= −

∫
du1dv1

{
iS−1

F (u1 − x1)iS−1
F (v1 − y1)

}
×

×
[
−iD−1

µν (u− x)(−i) δ3Z[0]

δη(u1)δη̄(v1)δJν(u)

]
(596)

Our next step is to use the form of Ltot. For QED we have the interaction Lagrangian

Lint = eψ̄γµψAµ (597)

and so

Z[η, η̄, Jµ] = N exp

(
ie

∫
dDz

−iδ
δη(z)

γλ
−iδ
δη̄(z)

−iδ
δJλ(z)

)
Z0 (598)

where Z0 is the free version

Z0 = exp

(
−i
∫
dDxdDyη̄(x)SF (x− y)η(y)

)
× exp

(
i

2

∫
dDxdDyJµ(x)Dµν(x− y)Jν(y)

)
(599)

Therefore, to lowest nontrivial order in αQED, we have

δ3Z[0]

δη(u1)δη̄(v1)δAµ(u)
= ie

∫
dDzSF (u1 − z)SF (v1 − z)Dµν(u− z)γν (600)

117



Substituting in to our general form of the WTI of QED gives its lowest-order approximation:

Γµ(p, p+ q, q)|LO = γµ (601)

which is independent of the photon momentum qµ. Note that this does not generalize to
higher loops. We see that the WTI is more than adequately satisfied at lowest order in QED.
(For this we did not even need to use the form of Dµν .)

10.6 Photon masslessness and Charge Renormalization

Previously, we learned about propagator corrections arising from one-loop contributions.
We saw that the massive scalar field of λφ4 theory suffered a mass shift at one loop. Here,
in the QED context, we will see that the photon actually stays massless - to all orders in
perturbation theory. This is a direct consequence of the Ward Identity which, as we just saw,
is itself a consequence of U(1) gauge invariance.

Consider the exact photon propagator. This is physically relevant to any process involving
photons. At one loop, we had

iΠµν
2 (q) = (−ie)2(−1)

∫
dDk

(2π)D
Tr

[
γµ

i

(k/−m)
γν

i

[(k/+ q/−m]

]
(602)

where the factor of (−1) comes from the fermion loop.
For the general physical process we need the exact, 1PI propagator contributions

The Ward Identity says that
qµΠµν = 0 (603)

Now, the only tensor structures buildable out of ηµν and qλ are ηµν and qµqν/q
2. Requiring

orthogonality between q and Π implies that

Πµν(q) =
[
q2ηµν − qµqν

]
Π(q) (604)

Peskin and Schroeder argue (p.245) in some detail that Π(q2) should be regular at q = 0.
Essentially, this follows from the structure of 1PI diagrams, which cannot have massless
intermediate states appearing in them.

Pick Lorentz-Feynman gauge. The exact photon two-point function is then composed of
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iΠµν(q) = −iηµν
1

q2
+

(
−iηµρ

1

q2

)[
i(q2ηρσ − qρqσ)Π(q2)

](
−iησν

1

q2

)
+ . . .

= −iηµν
1

q2
+−iηµρ

1

q2
∆ρ
νΠ(q2) +−iηµρ

1

q2
∆ρ
σ∆σ

νΠ2(q2) + . . . (605)

where ∆ is defined as

∆µ
ν = δµν −

qµqν
q2

(606)

As you should check, this tensor ∆ is a projector. Therefore,

iΠµν(q2) =

(
−iηµρ

1

q2

)(
ηρν −

qρqν
q2

+
qρqν
q2

)
+

(
−iηµρ

1

q2

)
(∆ρ

ν)
[
Π(q2) + Π2(q2) + . . .

]
= − i

q2
(∆µν)

[
1 + Π(q2) + Π2(q2) + . . .

]
− iqµq

ν

q4

=
−i∆µν

q2(1− Π(q2))
− iqµq

ν

q4

=
−iηµν

q2[1− Π(q2)]
+

iqµqν
q4[1− Π(q2)]

− iqµq
ν

q4

=
−iηµν

q2[1− Π(q2)]
+

iqµqν
q4[1− Π(q2)]

{
1− [1− Π(q2)]

}
=

−iηµν
q2[1− Π(q2)]

+
iqµqνΠ(q2)

q4[1− Π(q2)]
(607)

Now, in any S-matrix computation, at least one end of our exact photon propagator will
connect to a fermion line. Therefore, summing over all places along the line where it could
connect, we must find that terms proportional to qµqν vanish by the Ward Identiy. So we
will abbreviate the above expression for the exact photon propagator – valid for S-matrix
elements only! – as

=
−iηµν

q2[1− Π(q2)]
(608)

Look closely at this form of the propagator. Notice that no mass shift appears: there
is no loop-generated correction to the tree level result. This masslessness of the photon is
a direct consequence of the structure of QED including the Ward Identity, as we have just
seen.

The only pole in the exact photon propagator is at q2 = 0. The residue of this pole at
q2 = 0 is

1

[1− Π(0)]
:= Z3 (609)
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Any low-q2 scattering process gets this shift. For example,

At this O(α) level of approximation, then, a scattering amplitude at nonzero q2 would
involve

−iηµν
q2

(
e2

0

1− Π(q2)

)
' −iηµν

q2

α

1− [Π2(q2)− Π2(0)]
(610)

Therefore, at O(α), we may identify

αeff(q2) =
e2

0/(4π)

1− Π(q2)
' α

1− [Π2(q2)− Π2(0)]
(611)

Peskin and Schroeder explain later in their textbook that, in the above form, this expression
is true to all orders (!) when Π2 is replaced by the full Π.

We now look back a few subsections to see what we actually found for the one-loop
photon propagator correction a.k.a. the vacuum polarization. We had

iΠµν
2 (q2) = (q2ηµν − qµqν)iΠ2(q2) (612)

where

Π2(q2) =
−2α

π

∫ 1

0

dxx(1− x)

[
2

(4− d)
− log ∆− γ + log(4π)

]
(613)

The divergent part of this is x-independent, so the Feynman integral for the first term above
collapses to 1/6. Accordingly, at O(α),

Π2(0) =
−2α

3π(4−D)
(614)

which blows up as D → 4. This is not a worry physically, because this infinite quantity is
not actually observed. What is physically measurable is

Π̂2(q2) := Π2(q2)− Π2(0) = −2α

π

∫ 1

0

dxx(1− x) log

(
m2

m2 − x(1− x)q2

)
(615)

which is totally independent of (4−D) as D → 4.
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10.7 The Optical Theorem and Cutkosky Rules

Whenever the photon propagator is in the t− or u− channel, this will be manifestly real
and analytic. However, for an s−channel process q2 will be positive and the logarithm can
develop a branch cut. This occurs when

m2 − x(1− x)q2 < 0 (616)

In other words, the branch cut begins where q2 = 4m2, when we are at threshold for produc-
tion of an electron-positron pair.

It is interesting to calculate the imaginary part of Π̂2 for q2 > 4m2. Recall that, for real
X,

I (log(−X + iε)) = +π (617)

while
I (log(−X − iε)) = −π (618)

so that going once around the complex X plane results in a change in the imaginary part
by 2π. This is one of the signature [mathematical] properties of the logarithm function in
terms of complex analysis. In other words, the iε prescription matters.

Using this property of logs in the complex plane, let us write down the imaginary part
of the Feynman graph

I
(
Π2(q2)− Π2(0)

)∣∣
q2±iε =

−2α

π
(±π)

∫ x+

x−

dxx(1− x) (619)

where x± are the solutions to the zero discriminant equation for q2 ≥ 4m2. Clearly,

x± =
1

2
± 1

2
β where β :=

√
1− 4m2

q2
(620)

Then

I
(
Π2(q2 ± iε)− Π2(0)

)
= ∓2α

∫ +β/2

−β/2
dy(

1

4
− y2)

= ∓α
3

√
1− 4m2

q2

(
1 +

2m2

q2

)
(621)

where y = x− 1/2 and q2 > 4m2. The amazing thing, as Peskin and Schroeder point out in
Ch7.5, is that this is precisely the cross section for production of an electron-positron pair!
More on this shortly, but first let us pull out how this physics of Π(q2)−Π(0) might change
what we mean by the EM interaction strength.

Notice that in a nonrelativistic limit |q2| � m2 so that

Π2(q2)− Π2(0) → 2α

π

∫ 1

0

dxx(1− x)
q2

m2
+ . . .

=
2α

π

(
q2

30m2
+ O(q4)

)
(622)
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so that in the low-q2 limit

Π̂2(q2)→ α

15π

q2

m2
+ O(q4) (623)

We can extract the position-space potential from this via Fourier Transform:

V (~x =

∫
d3q

(2π)3
ei~q·~x

−e2

|~q|2[1− Π̂2(−|~q|2]

→ α

r
− 4α2

15m2
δ3(~x) (624)

Clearly, this correction to the Coulomb potential is important only at short distances. For
the H atom, the only wavefunction which has support this far in is the s-wave: l = 0.
Accordingly, its energy shift coming from 1-loop QED physics is

∆E =

∫
d3x|ψ(~x)|2

(
− 4α

15m2
δ3(~x)

)
= − 4α

15m2
|ψ(0)|2 (625)

This is one piece of the famous Lamb Shift.
We can actually do better on approximating the effect of the 1-loop QED correction.

Consider the integral

V (~x) =
ie2

(2π)2r
2

∫ +∞

−∞
dQ

QeiQr

Q2 + µ2

[
1 + Π̂2(q2)

]
(626)

where we defined |~q| := Q and inserted a fictitious mass µ for the photon to regulate the
IR divergence lurking within. What features does our integrand have in the complex plane?
Well, it has a branch cut up the imaginary axis starting at 2im, and it has a pole at iµ.
The physical interpretation of these is that the Coulomb potential arises from the pole while
QED 1-loop corrections to the Coulomb potential arise from the branch cut.

To evaluate the integral, we push the contour upward. Since the real part of the integrand
is the same on both sides of the cut, the only contribution to the integral must come from
the imaginary part of Π̂2. Defining q = −iQ, we have

δV (r) =
−e2

(2π)2r
2

∫ +∞

−∞

e−qr

r
I (Π̂2(q2 − iε))

= −α
r

2

π

∫ +∞

2m

dq
e−qr

q

α

3

√
1− 4m2

q2

(
1 +

2m2

q2

)
(627)

At long distances, i.e. when r � 1/m, this integral is dominated by the region q ' 2m.
Approximating the integrand in this region and substituting t = q − 2m we find

δV (r) = −α
r

2

π

∫ ∞
0

dt
e−(t+2m)r

2m

α

3

√
t

m

3

2
+ O(t) (628)

and so

δV (r) ' −α
r

α

4
√
π

e−2mr

(mr)3/2
(629)
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so that the 1-loop corrected potential is

V (r) = −α
r

(
1 +

α

4
√
π

e−2mr

(mr)3/2
+ . . .

)
(630)

Note that the range of the correction term is limited: it leaks out to the electron Compton
wavelength 1/m. On this scale (about a picometre), H atom wavefunctions are approx-
imately constant, amd so the delta function approximation was actually a pretty decent
approximation. The radiative correction piece above is known as the Uehling potential.

As suggested earlier in the classroom discussion of the running of αQED, the radiative
correction can be interpreted as being due to screening. At distances r ≥ 1/m virtual e-
e+ pairs make the vacuum a dielectric in which the apparent charge (what we measure) is
less than the true charge. At smaller distances we begin to penetrate the cloud of virtual
dipoles and see more of the bare charge. Unsurprisingly, this phemenon is known as Vacuum
Polarization.

Now let us return to thinking about real and imaginary parts. We found that for q2 > 4m2

the vacuum polarization picked up an imaginary part, which was related physically to the
cross section for production of an e- e+ pair.

More generally, the imaginary part of a forward scattering amplitude arises from a sum
of contributions from all possible intermediate states. This is known as the Optical Theorem.

Where does the Optical Theorem come from? Unitarity of the S-matrix. Let us now see
how this arises. Consider our friend the S-matrix S and its friend the transfer matrix T :

S†S = 1 where S = 1 + iT (631)

Then we have
− i(T − T †) = T †T (632)

Next, we imagine sandwiching this equation between physical two-particle states |p1, p2〉 and
|k1, k2〉. On the RHS we also imagine inserting a complete set of intermediate states, as well.
Then the unitarity equation for the transfer matrix becomes

−i [M (k1k2 → p1p2)−M ∗(p1p2 → k1k2)]

=
∑
n

(
n∏
i=1

d3qi
(2π)3

1

2Ei

)
M ∗(p1p2 → {qi})M (k1k2 → {qi})×

×(2π)dδd(k1 + k2 −
∑
i

qi) (633)

where we have factored off an overall momentum conserving delta function.
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Our assumption here was that initial and final states are two-particle asymptotic states.
They could just as well have been one- or multi-particle states. Schematically, then, unitarity
of the S-matrix implies that

− i [M (a→ b)−M ∗(b→ a)] =
∑
I

∫
dΠIM

∗(b→ I)M (a→ I) (634)

For the case of two-particle states, and for the case of forward scattering where pi = ki gives

I (M (k1k2 → k1k2) = 2ECMpCMσtot(k1k2 → anything) (635)

where we made use of PS(4.79) for Lorentz-invariant phase space measure.
For Feynman Diagrams, the apperance of an imaginary part always requires a branch

cut singularity in the complex (momentum) plane. We saw this quite explicitly at one loop
by recognizing the signature property of logarithms in the complex plane. The rules beyond
one loop are more complicated than our one-loop example. The awesome thing is that J.
Cutkosky proved it generally, and his relations go by the name of Cutkosky Rules (1960).

• Cut through the Feynman diagram in all possible ways such that the cut propagators
can be simultaneously put on-shell.

• For each cut, replace each propagator like 1/(p2 −m2 + iε) by 2πiδ(p2 −m2), then do
loop integrals.

• Sum the contributions of all possible cuts.

Using these cutting rules, the Optical Theorem can be proven to all orders in perturbation
theory.

10.8 Counterterms and the QED beta function

So... how do we actually renormalize QED? So far we have seen how to regularize it, using
the techniques of dimensional regularization. But what are the systematics of counterterms
for QED? Let us start our exposition here with a reminder of the three primitively divergent
Feynman graphs of QED:

Σ(p) =
e2

8πε
(−p/+ 4m) + finite

Λµ(p, p′, q) =
e2

8π2ε
γµ + finite

Πµν(k) =
e2

6π2ε

(
kµkν − ηµνk2

)
+ finite (636)

Notice that these divergent parts satisfy the Ward Identity - as they must, by gauge invari-
ance.

Consider first the one-loop corrected photon propagator. This involved

Πµν(k) =
e2

6π2
(kµkν − ηµνk2)

{
1

ε
− γ

2
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+3

∫ 1

0

dxx(1− x) log

(
4πµ2

−m2 + k2x(1− x)

)
+ O(ε)

}
→ e2

6π2
(kµkν − ηµνk2)

{
1

ε
+

k2

10m2
+ . . .

}
(637)

Therefore, combining the 1-loop and tree pieces gives for the photon propagator

iD′µν =
−iηµν
k2

− e2

6π2

iηµν
k2

[
(kαkβ − ηα,βk2)

(
1

ε
+

k2

10m2

)]
ηβν
k2

+ . . .

= −iηµν
k2

(
1 +

e2

6π2ε
+

e2

60π2

k2

m2

)
− e2

6π2ε

kµkν
k4

+ . . . (638)

Notice that this corrected propagator is not in Feynman gauge. The reason is the term
proportional to kµkν . However, as we saw earlier, this does not affect physical quantities
which are gauge-invariant, because of the Ward Identity. The details of renormalization do
depend sensitively on both the gauge and the renormalization scheme.

The infinite 1/ε pieces must be removed by adding counterterms to the original La-
grangian. For QED, in the gauge sector we had in Feynman gauge

L2 = −1

4
F µνFµν −

1

2
(∂ · A)2 =

1

2
Aµ(ηµν∂

2)Aν (639)

So the counterterm we need at one loop is

∆L CT
2 = −C

4
F µνFµν −

E

2
(∂ · A)2 (640)

Note that C and E will be different, because of our observation above that the one-loop
corrected propagator is not in Feynman gauge even though the tree level propagator was.
So our bare Lagrangian becomes

L2B = −(1 + C)

4
F µνFµν −

(1 + E)

2
(∂λA

λ)2 (641)

We can rewrite this as

L2B = −(1 + C)

4
F µνFµν + gauge terms

= −Z3

4
F µνFµν + gauge terms (642)

where

Z3 = 1− e2

6π2ε
(643)

In this way, we obtain a finite 1-loop propagator for our friendly photon. Most importantly,
its mass is still exactly zero. Yay!

From earlier in this section on 1-loop QED, we had for the propagator

iD′µν =
−iηµν

k2[1− Π(k2)]
+ gauge terms
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=
−iηµν

k2[1− Πfinite(k2) + e2/(6π2ε)]
+ gauge terms

= − iZ3ηµν
k1[1− Πfinite(k2)]

+ gauge terms (644)

where we used our earlier definition Z3 = 1/[1−Π(0)]. From the definition of a propagator,
we know it is the vacuum-to-vacuum transition amplitude involving a time-ordered product
of two field operators. Using this intuition, we see that the counterterm Lagrangian therefore
motivates the definition of the bare gauge field as

AµB =
√
Z3Aµ (645)

It follows immediately that the renormalized propagator is

iD̃′µν =
−iηµν

k2[1− Πfinite(k2)]
+ gauge terms (646)

Now let us turn to the electron self-energy.
We found earlier in this section that the electron self-energy at 1-loop modifies the elec-

tron’s inverse propagator. Our tree+1-loop expression is

Γ(2)(p) = S ′F (p)−1 = SF (p)−1 − Σ(p)

= (p/−m)− e2

8π2ε
(−p/+ 4m) + finite

= p/

(
1 +

e2

8π2ε

)
−m

(
1 +

e2

2π2ε

)
+ finite (647)

Because the coefficients of p/ and m are not equal, a single counterterm will not suffice
to kill the UV infinities. We will need one counterterm for the overall magnitude of the
propagator, contributing to electron wavefunction renormalization, and a separate one for
the electron mass. So we add

L (CT)
1 = iBψ̄∂/ψ − Aψ̄ψ (648)

giving the total – bare – Lagrangian for the electron sector alone

L1B = i(1 +B)ψ̄∂/ψ − (m+ A)ψ̄ψ (649)

So our counterterms are:
Note that, as you can easily check, adding the interaction iBp/ modifies a propagator

from i/p/ to i/[(1 +B)p/]. Hence

e2

8π2ε
(−p/+ 4m) + A−Bp/ = finite (650)

as long as we set

A = − e2

2π2ε
and B = − i2

8π2ε
(651)
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The coefficient in front of the canonically normalized electron kinetic energy is

Z2 = 1 +B = 1− e2

8π2ε
(652)

This enables us to define the ‘bare’ wave function by

ψB =
√
Z2ψ (653)

in terms of which we can write the bare electron Lagrangian:

L1B − iψ̄B∂/ψB −mBψ̄BψB (654)

where the bare mass is defined by

mB = Z−1
2 (m+ A) =

(
1− e2

2π2ε

)
m

(
1 +

e2

8π2ε

)
= m

(
1− 3e2

8π2ε

)
= m+ δm (655)

at one loop order. Our philosophy here is that ψ is the physical electron field, while ψB is
the bare electron field which appears in the Lagrangian from which vertices for calculation
are taken.

Accordingly, our renormalized inverse electron propagator at one loop becomes

Γ(2)(p) = (p/−m)− [Σ(p) + A−Bp/] = p/−m+ finite (656)

We turn, finally, to the vertex function and its divergent part Λµ. We had previously
that

Λµ(p, q, p′ = p+ q) =
e2

8π2ε
γµ + finite (657)

The effect of this singular piece can be eliminated by adding a counterterm to the Lagrangian
of the form

∆L (CT)
3 = −Deµ2−D/2ψ̄A/ψ (658)

where

D = − e2

8π2ε
(659)

The Bare Lagrangian for the QED vertex at tree+1-loop is therefore

L3B = −(1 +D)eµε/2Aµψ̄γµψ := −Z1eµ
ε/2Aµψ̄γµψ (660)

with

Z1 = 1− e2

8π2ε
(661)

We have now completed the business of regularizing and renormalizing QED to one-loop.
Our total bare Lagrangian at this one-loop order is

LB = iZ2ψ̄γ
µ∂µψ−(m+A)ψ̄ψ−Z1eµ

ε/2Aµψ̄γµψ−Z3
1

4
(∂µAν−∂νAµ)2 +gauge terms (662)
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with

Z1 = Z2 = 1− e2

8π2ε
Z3 = 1− e2

6π2ε
A = −m e2

2π2ε
(663)

This Lagrangian gives – to one loop order in perturbation theory – finite self-energies and
vertex, where e and m stand for physical quantities which are experimentally measurable in
the lab. The bare charge is

eB = eµε/2
Z1

Z2

√
Z3

= eµε/2Z
−1/2
3 (664)

The total bare Lagrangian is, counting all sectors,

LB = iψ̄B∂/ψB −mBψ̄BψB − eBAµBψ̄BγµψB −
1

4
(∂µAB ν − ∂νAB µ)2 (665)

From our relationships between bare and renormalized quantities, we obtained

eB = eµε/2
(

1 +
e2

12π2ε

)
(666)

In the limit ε → 0, the bare charge eB is independent of µ, but the physical charge e does
depend on µ as we now show. Differentiating the above equation w.r.t. µ gives, to one loop
order in QED perturbation theory,

µ
∂e

∂µ
= −eε

2
+

e3

12π2
(667)

Letting ε→ 0 then gives

β(µ) = µ
∂e

∂µ
=

e3

12π2
(668)

So, like λφ4 scalar field theory, QED has a positive beta function. This differential equation
for the QED coupling e(µ) at one-loop order has the solution

e2(µ) =
e2(µ0)

1− [e2(µ0)/(6π2)] log(µ/µ0)
(669)

From this we can see very explicitly the increase of e with µ. If we stare hard at the formula,
we can also see that it possesses a sickness known as the Landau pole: the physical coupling
blows up at µ = µ∗ when

µ∗ = µ0 exp

(
6π2

e2(µ0)

)
(670)

This is ameliorated by higher loop corrections, but QED is still a sick theory in the sense
that it becomes strongly coupled in the UV. This indicates that it must be embedded in a
larger theory. Nonabelian gauge theories, by contrast, have negative beta functions, which
is something you will discover for yourselves in your Final Project.
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11 An introduction to chiral anomalies

One of the central tenets of functional quantization is keeping symmetries of the theory
manifest in the Lagrangian of the theory and all physics calculated therefrom. Sometimes,
however, there can be a hiccup that arises on doing loop-level calculations in any given QFT.
This hiccup takes the form of quantum breaking of symmetries of the classical action. The
resulting pain in the arse is known as an anomaly.

There are many ways to see how the Adler-Bell-Jackiw anomaly arises. One derivation
focuses on the behaviour of the measure in the fermionic Feynman Path Integral. Since
this fits best with our functional quantization exposition this semester, we will reveal the
anomaly using the FPI.

11.1 Anomalies in Path Integral Quantization

First we do a ‘quick-and-dirty’ attempt to get the right answer. It will turn out that this
result is incorrect and will need to be refined.

A prototypical example is the axial current. Consider a species of fermion ψ with Feyn-
man Path Integral

Z =

∫
Dψ̄Dψ exp

[
i

∫
d4x

(
ψ̄iD/ψ

)]
(671)

Suppose that we perform a chiral rotation, changing variables to

ψ(x) → ψ′(x) = (1 + iα(x)γ5)ψ(x)
ψ̄(x) → ψ̄′(x) = ψ̄(x) (1 + α(x)γ5) (672)

Now, a global chiral rotation – one with constant α – is a symmetry of the tree-level La-
grangian. Therefore, the only new terms generated in L by doing the above chiral transfor-
mation are proportional to ∂α(x). Specifically,∫

d4xψ̄′(iD/)ψ′ =

∫
d4x

[
ψ̄iD/ψ − ∂µα(x)ψ̄γµγ5ψ

]
=

∫
d4x

[
ψ̄iD/ψ + α(x)∂µ

(
ψ̄γµγ5ψ

)]
(673)

where the last line above follows using integration by parts. Finally, varying the Lagrangian
w.r.t. α(x), we obtain the chiral current conservation equation

∂µj
µ5 = 0 (674)

So is this really true? Is chiral symmetry preserved at loop level for an arbitrary QFT?
Oops. We made one huge assumption in our method above:

Dψ̄′Dψ′ = Dψ̄Dψ (675)

Unfortunately, it turns out that we have been entirely too cavalier here. We just assumed
that there was no Jacobian involved. We should now take a couple of steps back and take
time to calculate how the fermionic measure actually transforms.
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K.Fujikawa in 1979 showed what goes wrong quantum mechanically with assuming chiral
current conservation. Following his analysis (and the exposition in Peskin and Schroeder!),
we now switch our close focus to the behaviour of the fermion measure in the FPI.

To do a proper job of defining the FPI measure, let us expand our fermion field ψ(x) in
a basis of eigenstates φm of the operator D/. In particular, let us define L and R eigenvectors
via

(iD/)φm = λmφm
φ̂m(iD/) = −iDµφ̂mγ

µ = λµφ̂m (676)

When the background Aµ gauge field is zero, these eigenstates are just the regular Diract
wavefunctions of definite momentum – animals with which you are intimately familiar as a
result of QFT1. The eigenvalues λm obey

λ2
m = k2 = (k0)2 − |~k|2 (677)

But for a fixed background gauge field, this is also (!) the asymptotic form of the eigen-
values for large k. For anyone interested in deeper level of detail, Tom Banks’ textbook
“Modern Quantum Field Theory” section 8.8 contains a more detailed analysis than we
attempt here. From now on this asymptotic form of the eigenvalues will be the driver.

We write in this basis

ψ(x) =
∑
m

amφm(x)

ψ̄(x) =
∑
m

âmφ̂m(x) (678)

where am, âm are anticommuting coeffficients and φm, φ̂m are c-number (commuting) wave-
functions.

Then our functional measure over ψ, ψ̄ is

DψDψ̄ =
∏
m

damdâm (679)

Suppose that we perform a chiral rotation on our fermion field. How does the measure
of the transformed fermion field compare to the original? We have

ψ′(x) = {1 + iα(x)γ5}ψ(x) (680)

The expansion coefficients of ψ and ψ′ are related by an infinitesimal transformation (1+C),
as follows:

a′m =
∑
n

∫
d4xφ†m (1 + iα(x)γ5)φm(x)an

=
∑
n

(δmn + Cmn) an (681)

The above tells us that our Jacobian of the chiral transformation is J = (1 + C).
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Now comes the really crucial bit. Recall that, by properties of Grassmann integration
for anticommuting fields,

Dψ′Dψ̄′ =
1

J2
DψDψ̄ (682)

Note that J2 being in the denominator is not a typo: it really is there, by properties of
Grassmann integration.

The Jacobian is

J = det (1 + C) = exp (Tr log(1 + C))

= exp

(∑
n

Cnn + O(C2)

)
(683)

and we can ignore higher order terms as C is infinitesimal. So

log J = i

∫
d4xα(x)

∑
n

φ̂n(x)γ5φn(x) (684)

It might seem at first glance that this is tr(γ5) = 0. But this turns out be an illusion:
we have to be careful to regularize the sum over eigenstates in a gauge-invariant way rather
than just operating by the seat of the pants.

As with any loop-level Feynman diagram, we can perform any one of a number of reg-
ularization methods. Here we make the ‘natural choice’ (PS) and put in a Gaussian style
regulator: ∑

n

φ†n(x)γ5φn(x) = lim
M→∞

∑
n

φ†n(x)γ5φn(x) exp

(
λ2
n

M2

)
(685)

Note: because we work in a mostly-minus signature, the above choice of sign in the Gaussian
factor is indeed correct:

k2 = (k0)2 − |~k|2 (686)

and upon Wick rotation the above Gaussian damping factor becomes

exp
(
−(λE)2

n/M
2
)

(687)

as expected.
In operator form, our expression becomes

lim
M→∞

∑
n φ†n(x)γ5 exp

(
(iD/)2

M2

)
φn(x)

= lim
M→∞

〈x|Tr

[
γ5 exp

(
(iD/)2

M2

)]
|x〉 (688)

where the trace indicated is over Dirac fermion indices.
Our next step is to evaluate (iD/)2. We know that

(iD/)2 = −(D/)2 = −γµDµγ
νDν

= −γµγνDµDν (689)

131



Now, we can always expand a two-index tensor in terms of its symmetric and antisymmetric
parts:

γµγν = γ(µγν) + γ[µγν] (690)

The first term on the RHS is just the Minkowski metric, by the fundamental anticommutation
relations for gamma-matrices. Defining

γµν ≡ 1

2
[γµ, γν ] (691)

we have
γµγν = ηµν + γµν (692)

Therefore, we have for the square of the Dirac operator

(iD/)2 = − (ηµν + γµν)DµDν

= −D2 +−γµνDµDν (693)

Clearly, the term γµνDµDν can be nonzero only if [Dµ, Dν ] 6= 0. We know from our
earlier discussion of non-Abelian gauge field theories that, acting on fermions,

[Dµ, Dν ] = −igFµν (694)

(You can check this explicitly by using Dµ = ∂µ − igAµ.) Therefore

(iD/)2 = −D2 − γµν
(
−ig

2
Fµν

)
= −D2 +

ig

2
γµνFB

µνt
B

= −D2 − g

2
(iγµν)Fµν (695)

As indicated previously, as we take our regulator M →∞, we can focus our attention on
the asymptotic part of the spectrum. We approximate k as large, and expand in powers of
the gauge field Aµ. But what kind of term would arise? Properties of γ-matrices in D = 4
tell us that we will get a result tracing γ5 against e(iD/)2/M2

if we have four γ-matrices beside
the γ5. This intuition allows us to anticipate the result to be a term of order (iγ : F )2, and
other terms will be subdominant to it. We find

lim
M→∞

〈x| Tr

{
exp

[
−D2 − ig

2
(iγµν)Fµν

]}
|x〉

= lim
M→∞

Tr

{
γ5

1

2!

[ g

2M2
(iγµνFµν)

]2
}
〈x|e−∂2/M2|x〉 (696)

Now,

〈x|e−∂2/M2 |x〉 = lim
x→y

∫
d4k

(2π)4
exp (−ik · (x− y)) exp

(
k2

M2

)
= i

∫
d4kE
(2π)4

exp

(
− k2

E

M2

)
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= i
M4

16π2
(697)

Therefore, we have

lim
M→∞

{
1

8

−ig2

16π2
M4Tr

[
γ5γ

µγνγλγσ
(

1

M2

)2

FµνFλσ

]}
=
−g2

32π2
εµνλσFµνFλσ (698)

In other words,

J = exp

{
−i
∫
d4xα(x)

g2

32π2
εµνλσFµνFλσ

}
(699)

Look carefully at what just happened! After our change of variables according to a chiral
rotation (

ψ, ψ̄
)
→
(
ψ′, ψ̄′

)
(700)

our Feynman Path Integral picked up a factor

Z =

∫
DψDψ̄ exp

(
i

∫
d4x

{
ψ̄(iD/)ψ + α(x)

[
∂µj

µ5 +
g2

16π2
εµνλσFµνFλσ

]})
(701)

Since this has to be true for arbitrary α(x), the loop-modified equation for nonconservation
of jµ5 is

∂µj
µ5 = − g2

16π2
εµνλσFµνFλσ (702)

For Yang-Mills theories rather than QED, we would add a trace in front of the epsilon
pseudotensor.

What physics message should we draw from this? Well, since the chiral current is not con-
served in a background gauge field, the number of fermions minus the number of antifermions
will not be conserved.

Note: this derivation we just completed generalizes readily to any even dimension of
spacetime. The functional derivation always picks out the term in the expansion of exp (iγµνFµν)
that has the same dimension, D, as the divergence of the anomalous current. The general
expression is

∂µj
µ5 = (−1)D/2+1 2eD/2

(D/2)!(4π)D/2
εµ1µ2...µD/2Fµ1µ2 . . . FµD−1µD (703)

11.2 Triangle anomaly: the Feynman Diagram approach

Consider our friend the Standard Model. Recall our Pauli sigma matrix conventions

{σµ} = {1,+~σ}
{σ̄µ} = {1,−~σ} (704)

Also, our covariant derivative acting on any given fermion representation r is

Dµ = 1∂µ − igAAµ tAr (705)
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where the generators tr depend on the fermion representation.
Suppose that we keep right-handed chiral fermions free and minimally couple the left-

handed chiral fermions to the gauge field Aµ. Then the Lagrangian becomes

L = ψ̄iγµ
[
1∂µ − igAAµ tAr

(
1− γ5

2

)]
ψ (706)

This Lagrangian is invariant under gauge transformations on left-handed fields only:

ψ →
[
1 + iαAtAr

(
1− γ5

2

)]
ψ

AAµ → AAµ +
1

g
∂µα + fABCABµα

C (707)

which are just the usual Yang-Mills transformation laws. The corresponding Noether current
is

jµA = ψ̄γµ
(
1− γ5

2

)
tAr ψ (708)

The projector

P− =
1− γ5

2
(709)

is involved in the Noether current because only left-handed fields contribute to it: they are
the only fields that “feel” the gauge symmetry. The right-handers are gauge singlets in this
model.

We are now in a position to ask the question: how can we see non-conservation of the
chiral Noether current in the context of Feynman diagrams at loop level in perturbation
theory? Consider ∂µj

µA; in momentum space this will be proportional to iqµj
µA. Therefore,

the Feynman diagrams that are relevant will involve an insertion of jµA into a one-loop
diagram. In turn, these Feynman diagrams must involve fermions running around the loop,
and by the structure of ψ − ψ̄ − A vertices, they involve two external gauge boson legs.
Diagrammatically:

From our Path Integral discussion of anomalies, we can anticipate that only the γ5 part
of the chiral Noether current will contribute.

In terms of matrix elements,∫
d4xe−iq·x〈p, ν; k, λ|jµ5(x)|0〉 = (2π)4δ(4)(p+ k − q)ε∗ν(p)ε∗λ(k)M µνλ(p, k) (710)
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where M µνλ gets contributions from

Let us evaluate the first diagram. Since the anomaly equation involves the divergence of
the chiral Noether current, in momentum space this means contracting up the above with
iqµ:

Qµ
1 ≡ (−1)(−ie)2

∫
dDl

(2π)D
Tr

[
(iqµ)γµγ5

i(l/+ k/)

(l − k)2
γλ
il/

l2
γν
i(l/− p/)
(l + p)2

]
(711)

The second diagram just has (p, ν)↔ (k, λ).
Now

qµγ
µγ5 = q/γ5

= [k/+ p/+ (l/− l/)]γ5

= (l/+ p/)γ5 + γ5(l/− k/) (712)

So iqµ dotted into the diagram with the insertion of jµ5 is

Q1 = iqµQ
µ
1 =

∫
dDl

(2π)D
Tr

[
{q/γ5 = (l/+ p/)γ5 + γ5(l/− k/)} 1

(l/− k/)
γλ

1

(l/)
γν

1

(l/+ p/)

]
(713)

Notice that one propagator factor cancels part of the numerator in each of the two terms.
Next, we assume that in dimensional regularization it is fine to gaily anticommute γ5

through other γν , which yields

Q1 = e2

∫
dDl

(2π)D
Tr

[
+γ5

1

(l/− k/)
γλ

1

l/
γν − γ5

1

l/
γν

1

(l/+ p/)
γλ
]

(714)

where we have also made use of cyclicity of the trace in both terms. Notice that we can
relabel l→ l+ k in the first loop integral. It follows immediately that our result for the first
diagram contributing to Q1 is manifestly antisymmetric under interchange of the labels on
the two external gauge boson legs. But the sum of the Feynman graphs must be symmetric
under the very same interchange. Therefore, the sum of the two Feynman graphs is zero and
the chiral anomaly is apparently nowhere to be seen!

So what did we do wrong? Our fatal assumption was regarding the anticommutation
behaviour of γ5. In truth, when we continue away from four dimensions of spacetime, there
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are surprises in store, arising from the fact that γ5 is an intrinsically four-dimensional animal.
To get at the correct answer, we need to recall that the loop momentum over which we
integrate lives in D dimensions of spacetime, not four, so that we can write

l = l‖ + l⊥ (715)

where l‖ lives in four dimensions and l⊥ lives in D − 4 dimensions. As a consequence, we
have the extremely important revision of the familiar behaviour of γ5:

{γ‖, γ5} = 0
[γ⊥, γ5] = 0 (716)

In other words, γ5 only anticommutes with the four-dimensional set of γµ, and commutes
with the rest (because it has no reason to anticommute!).

Therefore, we have

qµγ
µγ5 = q/γ5

= (k/+ p/)γ5

= k/γ5 − γ5p/
= (k/+ l‖/)γ5 + γ5(l‖/− p/)
= (k/+ l/)γ5 − l⊥/γ5 + γ5(l/− p/)− γ5l⊥/
= (k/+ l/)γ5 + γ5(l/− p/)− 2γ5l⊥/ (717)

Therefore, the only non-cancelling part of the sum of the two Feynman graphs is

iqµ(Qµ
1 +Qµ

2) = e2

∫
dDl

(2π)D
Tr

[
{−2γ5l⊥/}

(l/− k/)
(l − k)2

γλ
l/

l2
γν

(l/+ p/)

(l + p)2

]
(718)

Our next few steps are clear, given our past experience with one-loop diagrams.

• Use Feynman parameters (three of them) to combine the three denominators.
• Shift l→ l + P where P = xk − yp.
• In expanding the numerator, retain one factor each of γν , γλ, p/, k/ to get a nonzero trace

against γ5.
• Focus on what is left over: one factor of l⊥/ and one of l/ = (l‖/ + l⊥/). Note that l⊥/

commutes with other gamma matrices in the four-dimensional part. Therefore, our
final result is of the form ∫

dDl

(2π)D
l⊥/ l⊥/

(l2 −∆)3
(719)

where
i

(4π)D/2
(D − 4)

2

Γ(2−D/2)

Γ(3)∆2−D/2 −→
−i

32π2
(720)

as D → 4. Notice that we did not need to know details about ∆ because the (D − 4)
factor in the numerator cancelled the logarithmic divergence from the ∆-dependent
part.

136



• Use the symmetry relationship

(l⊥/)
2 = l2⊥ =

(D − 4)

D
l2 (721)

which is valid under the shifted-l loop integral.

So, after the dust settles, we are left with

iqµ(Qµ
1) = e2 −i

32π2
Tr
[
2γ5(−k/)γλ(p/)γν

]
=

e2

4π2
εαλβνkαpβ (722)

This term is already symmetric in (p, ν)↔ (k, λ), and so addition of iqµQ
µ
2 just doubles the

final result. Finally, we have

〈p, ν; k, λ|∂µjµ5(0)|0〉 =
e2

2π2
εαλβν(−ipα)ε∗ν(p)(−ikβ)ε∗λ(k)

=
e2

16π2
〈p, ν; k, λ|εανβλFανFβλ(0)|0〉 (723)

This is nothing other than the ABJ anomaly equation in disguise:

∂µj
µ5(x) = − e2

16π2
εαβγδFαβFγδ(x) (724)

If we were doing Yang-Mills gauge theory we would simply put a trace before the field
strength tensors in the above expression.

11.3 Anomaly cancellation for chiral gauge field theories

Start with a theory containing no mass terms for fermions - like our friend the Standard
Model. In a helicity basis, we can couple (at least classically!) left- and right-handed
fermions to gauge fields in different ways.

One of the things we can learn by messing around with Lorentz transformations is that
σ2ψ∗R transforms as a left-handed spinor despite being constructed out of ψR. This is a
conclusion that only works when there is no explicit mass term in the Lagrangian. Otherwise
it would make no sense to try to separate ψR from ψL! Let us therefore write, suppressing
generation indices for now,

ψ̃L = σ2ψ∗R
ψ̃†L = ψTRσ

2 (725)

so that

ψR = −σ2ψ̃∗L
ψ†R = −ψ̃TLσ2 (726)
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Let us examine the free and minimal-coupling bits separately. We will write

SR =

∫
ψ†Riσ

µ∂µψR = i

∫
ψ†Rασ

µ
αβ
~∂µψRβ = −i

∫
ψ†Rασ

µ
αβ

←−
∂ µψRβ (727)

where in the last step we used integration by parts. Next, we use the fact that animals like
ψRβ or σµαβ is a number, not a vector or a matrix in Dirac index space or any other space.
The only pieces we have to be careful about commuting through each other merrily are the
Grassmann variables. Therefore,

SR = +i

∫
ψRβσ

µ
αβ
~∂µψ

†
Rα

= +i

∫
(−σ2

βγψ̃
†
L)σµαβ∂µ(−ψ̃TL δσ2

δα)

= +i

∫
ψ̃†Lγσ

2
βγσ

µ
αβσ

2
δα∂µψ̃Lδ

= +i

∫
ψ̃†Lγ(σ

2,T )γβ(σµ,T )βα(σ2,T )αδ∂µψ̃Lδ (728)

But since σi † = σi we get (σi)T = (σi)∗ = σ2σiσ2 , we can rewrite the action for right-handed
fermions as

SR = +i

∫
ψ̃†L(σ2σ2σ2)(σ2σ̄µσ2)(σ2σ2σ2)∂µψ̃L

=

∫
ψ̃†l iσ̄

µ∂µψ̃L (729)

Note that this is exactly what we hoped for: the expected action principle for a left-handed
fermion ψ̃L.

Now let us look at the vertex term and make all indices explicit to keep the algebra
straight:

Sint =

∫
gψ†Rσ

µAAµ t
A
r ψR

=

∫
g(ψ†R)αaσ

µ
αβA

A
µ (tAr )ab(ψR)βb

=

∫
g(−ψ̃TLσ2)αaσ

µ
αβA

A
µ (tAr )ab(−σ2ψ̃∗L)βb

=

∫
gψ̃†Lγa(σ

2)γα(σµ)αβA
A
µ (tAr )ab(σ

2)βδψ̃
∗
Lδb (730)

Now that all of our indices are explicit, we can start the commute-it-through operation while
remembering carefully the rules for anticommuting Grassmann fields. We get

Sint = −
∫
gψ̃∗Lδb(σ

2)βδσ
µ
αβA

A
µ (tAr )ab(σ

2)γαψ̃
∗
Lγa

= −
∫
gψ̃†Lδb(σ

2,T )δβ(σµ,T )βαA
A
µ (tA,Tr )ba(σ

2,T )αγψ̃Lγa (731)
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Now, using the fact that σ2σµσ2 = σ̄µ and vice versa, and the complex conjugation property
of sigma matrices,

Sint = −
∫
gψ̃†δb(σ

2)δβ(σµ∗)βα(σ2)αγA
A
µ (tA,Tr )baψ̃γa (732)

In other words, we have

Sint = −
∫
gψ̃†Lσ̄

µAAµ (tAr )T ψ̃L (733)

This shows (without using any integration by parts manoeuvre) that the representation ψ̃L
has generators (tAr )T if ψR had generators (tAr ). It follows immediately that our twiddled
fields belong to the conjugate representation of the gauge group. This is known as the r̄ if
the original representation is labelled by r.

Putting the right- and left-handed actions together gives, for one species,

L = ψ†Riσ
µ
(
1∂µ − igAAµ tAr

)
ψR

= ψ̃†Liσ̄
µ
(
1∂µ + igAAµ (tAr )T

)
ψ̃L

= ψ̃†Liσ̄
µ
(
1∂µ − igAAµ (tAr̄ )

)
ψ̃L (734)

Consider QCD with nf flavours of massless quarks. This can be rewritten as an SU(3)
gauge theory coupled to nf massless quarks in the 3 representation and nf massless quarks
in the 3̄ representation.

How about the most general gauge theory with massless fermions? Let us put the left-
handed fermions into an arbitrary, reducible representation R of the gauge group G. We just
found right now that rewriting a system of (massless) Dirac fermions in a solely-left-handed
basis gives R = r⊕ r̄. Note: r̄ may be equivalent to r if there exists a unitary U such that
tAr̄ = −tA∗r = −(tAr )T . If such a U exists, then the representation r is real. Conversely, if R
is not a real representation, then L cannot be rewritten in terms of Dirac fermions and is
intrinsically chiral.

At the classical level, R is unrestricted. At loop level, for chiral gauge theories there
will typically be anomalies which render many of the field theories inconsistent quantum
mechanically. Let us compute which Feynman diagrams would contribute. We have identical-
looking Feynman diagrams to the two we summed in the previous section. In particular, we
had

• The marked vertex denoted by • has one insertion of the gauge symmetry current

gµA = ψ̄γµ
(
1− γ5

2

)
tAψ (735)

• Gauge boson vertices also carry a left-chiral projector P− = (1 − γ5)/2. The three
projectors emanating from the gauge vertices or symmetry current insertions in the
1-loop diagram can be collected into one, since P2

± = P±.
• The technique we used earlier – regularizing with l‖ and l⊥ – yields for the term in γ5

an axial vector anomaly

〈p, ν, b; k, λ, c|∂µjµ5|0〉 =
g2

8π2
εανβλpαkβA

ABC (736)
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where the group theory factor is

A ABC = Tr
[
tA
{
tB, tC

}]
(737)

Therefore,
∂µj

µ5 = 0 iff A ABC = 0 (738)

Note that this A ABC is a group invariant which is totally symmetric in all three indices.
Therefore, it doesn’t actually matter which gauge boson leg we think of as being ‘attached’
to the current insertion in the triangle anomaly diagram.

Local gauge symmetry of the action relies on the same global symmetry being exact. So
if the chiral current is not conserved, then our gauge field theory is, well, screwed. Triangle
anomaly diagrams like the above typically generate divergent mass terms for non-Abelian
gauge bosons, which messes with the delicate relationships between 3- and 4-point vertices
(Ward Identities, etc.). So unitarity of the gauge theory S-matrix demands the consistency
condition

A ABC = 0 (739)

Gauge field theories involving chiral couplings to matter are said to be anomaly-free if they
obey this equation.

Note: if ψ are real then the anomaly coefficients vanish. A special case of this is the Dirac
representation R = r⊕ r̄; all theories built with Dirac fields are automatically anomaly-free.

Let’s do some examples.
SU(2)3: For this case, tA = σA/2 ≡ τA and we have {σB, σC} = 2δBC so that

A ABC =
1

8
Tr[σA · 2δBC ] = 0 (740)

SU(2)2U(1)1: For this case we have

A BC = Tr[Q{τB, τC}] =
1

2
Tr[Q]δBC (741)

How can the trace of the charge operator vanish? It can happen if we remember that we
have to sum over all quarks and leptons! For quarks and leptons of the Standard Model we
have

Tr[Q] = 3 · (+2

3
− 1

3
) + (0− 1) = 1− 1 = 0 (742)

where the factor of 3 in the first term is just the number of colours. So we see that the
electroweak theory of the standard model is consistent only when the number of leptons is
equal to the number of quarks. You can also check for yourself by working out the explicit
details that the Standard Model is consistent only if quarks and leptons come in complete
SU(2) doublets: it is not theoretically possible to have an odd number of quarks or leptons.
This is one reason why everyone expected the top quark after the discovery of the bottom
quark: it just “had to be there”!

One interesting question to ask is: which gauge groups possess anomaly coefficients
in the first place? These things A ABC are completely symmetric tensors which are also
group invariants. In some cases the structure of the group precludes there being anomaly
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coefficients at all. For SU(2), we can ask what happens when we tensor together two spin-1
representations. We get the direct sum of a singlet and a spin-2 rep. Neither of these would
couple with a spin-1 rep to give a group invariant. The conclusion is that SU(2) has no
anomaly coefficient.

For SU(n), n ≥ 3, there is such a group invariant. It arises from the anticommutation
relations of generators

{tAn , tBn } =
1

n
δAB + dABCtCn (743)

The unique group invariant is the dABC thingy.
Let us define a scalar anomaly coefficient A by

Tr
[
tAr
{
tBr , t

C
r

}]
=

1

2
A (r)dABC (744)

For the fundamental representation n, we have A(n) = 1.
Of the various available simple Lie groups, only SU(n), SO(4n+2) and E6 have complex

representations – the kind we need to represent chiral fermions. Of these, only SU(n) and
SO(6) ' SU(4) have the required three-index tensor group invariant to form an anomaly.
Gauge theories based on SO(4n + 2), n ≥ 2 or on E6 are anomaly-free. This fact is related
to the popularity of SO(10) and E6 in GUT model building!
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12 Appendix: advanced tidbits

12.1 YM vs GR

The story of Yang-Mills may appear to possess some strong similarities to the story of the
Christoffel connection or spin connection in GR. There are however very important physical
differences, chief among them that GR is the classical theory for a massless spin-two field,
while YM is for spin one. In addition, general coordinate transformations act on spacetime
coordinates whereas gauge transformations act on an internal field space.

There are also crucial mathematical differences between YM and GR. The gauge con-
nection is technically defined as a connection on a principal fibre bundle, whereas the spin
connection (not to be confused with the Christoffel connection) is a connection on a bundle
of orthonormal frames.

In GR, we can define our dynamical gravitational fields to be vielbeins eaµ via

gµν = eaµe
b
νηab (745)

Physicists will sometimes play fast and loose with words by calling vielbeins the square
root of the metric tensor. What is most physically crucial about these vielbein animals is
that they convert curved spacetime indices (µ) to flat tangent space indices (a). The fact
that curved and tangent space indices are not equivalent is because we allow a nontrivial
spacetime metric; in simple Minkowski space they would be the same. Curved indices are
raised or lowered by the full metric tensor, while tangent space indices are raised or lowered
via the Minkowski metric.

It is possible to define tangent-space one-forms (one-index covariant vectors) via

ea = eaµdx
µ (746)

Notice that what we did here was to contract up the spacetime (curved) index of the vielbein
with a coordinate basis one-form dxµ to create a one-form living in the tangent space. This
guy would then be subject to Lorentz transformations, while the curved-space counterpart
suffers full coordinate transformations.

The requirement that the spin connection be torsion-free (which is what GR assumes) is

T a = dea + ωab ∧ eb = 0 (747)

This equation is sufficient to determine ωab in terms of vielbeins and their first derivatives.
The spin connection coefficients obey

ωab = −ωba (748)

Then the Cartan structure equations read

Ra
b = dωab + ωac ∧ ωcb (749)

Note that the Riemann tensor’s indices in curved space would be recovered by using

Ra
b = Ra

bµνdx
µ ∧ dxν (750)
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and contracting with (inverse) vielbeins to convert from tangent space to curved space

Rµ
νλσ = eµae

b
νR

a
bλσ (751)

As you can see, the structure equation (749) for the spin connection bears a strong similarity
to how the field strength F is defined in terms of the gauge potential A:

F = dA− igA ∧ A (752)

This similarity does not persist at a deeper level in generic dimensions of spacetime. Gauge
and gravitational fields really are physically (and mathematically!) different. Insisting oth-
erwise amounts to wishful thinking technically.

12.2 Conformal group

The conformal group SO(d + 1, 2) is the subgroup of general coordinate transformations
preserving the conformal flatness of the Minkowski metric. It contains the Lorentz group
SO(d, 1) as a subgroup. It also contains two new kinds of transformations. The first kind is
scale transformations a.k.a. dilatations, which act as

xµ → x′µ = (1 + λ)xµ , (753)

where λ is a constant parameter. The second new kind of transformation is special conformal
transformations a.k.a. conformal boosts. There is a simple way of deriving the effect of a
conformal boost: do an inversion

xµ → x′µ =
xµ

x2
(754)

followed by a translation followed by another inversion. To show that dilatations and in-
versions preserve the conformal flatness of the metric, we can inspect how ds2 = ηµνdx

µdxν

transforms.
Using the inversion-translation-inversion idea, we can show that the conformal boosts act

as

xµ → xµ + bµx2

1 + 2b · x+ b2x2
, (755)

where bµ is a constant parameter. It is straightforward to use this to find the infinitesimal
form of the conformal boosts. For a Lorentz transformation of the form

U = exp

(
i

2
ωµνMµν

)
(756)

acting on the coordinates, the infinitesimal form is

∆xµ = ωµνxν . (757)

Using the above facts, we can find the most general infinitesimal conformal transformation,

∆xµ = aµ + ωµ· νx
ν + λxµ + bµx2 − 2xµ(b · x) , (758)
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where λ, aµ, bµ, ωµ· ν are constant parameters corresponding to dilatations, translations, con-
formal boosts, and Lorentz transformations respectively. Counting the number of parameters
for the conformal group, we can quickly see that there are n(D) = 1

2
(D+ 2)(D+ 1) of them.

It is interesting to work out the algebra of the generators of infinitesimal conformal
symmetries, which contains the Poincaré algebra of HW1 as a subalgebra. Using the repre-
sentations11

Pµ = −i∂µ ,
Lµν = −xµPν + xνPµ ,

D = −ixµ∂µ ,
Kµ = i(x2∂µ − 2xµx

ν∂ν) . (759)

Using our knowledge from HW1, we can find the conformal algebra commutation relations,

[D,Pµ] = +iPµ ,

[D,Kµ] = −iKµ ,

[Kµ, Pν ] = +2i(ηµνD − Lµν) ,
[Pρ, Lµν ] = +i(ηρµPν − ηρνPµ) ,

[Kρ, Lµν ] = +i(ηρµKν − ηρνKµ) ,

[Lµν , Lρσ] = +i(ηνρLµσ − ηµρLνσ + ηµσLνρ − ηνσLµρ) . (760)

Making the definitions

Jµν = Lµν , J0µ =
1

2
(Pµ +Kµ) , J−1µ =

1

2
(Pµ −Kµ) , J−10 = D , (761)

allows us to obtain the SO(d+ 1, 2) commutation relations,

[JAB, JCD] = +i (ηADJBC − ηACJBD + ηBCJAD − ηBDJAC) , (762)

where JAB = −JBA, (ηAB) =diag(−1,−1, 1, . . . , 1), and A,B range over −1, 0, 1, . . . , d.
The two-dimensional case is special because the conformal algebra we have been dis-

cussing above turns out to be just a subalgebra of an infinite-dimensional symmetry algebra.
In 2D, conformal transformations are analytic coordinate transformations

z → f(z) , z̄ → f̄(z̄) . (763)

To exhibit the generators, consider infinitesimal conformal transformations of the form

z → z′ = z − εnzn+1 z̄ → z̄′ = z̄ − ε̄nz̄n+1 (764)

where n ∈ Z. These are angle-preserving whenever f and its inverse are holomorphic. The
corresponding infinitesimal generators are

`n = −zn+1∂ ¯̀
n = −z̄n+1∂̄ (765)

11We use conventions of the conformal field theory textbook by di Francesco Mathieu and Senechal.
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where we use the shorthand ∂ = ∂/∂z and ∂̄ = ∂/∂z̄. By considering the infinitesimal
transformations generated by the {`0,±1, ¯̀

0,±1} only, it is straightforward to show that `−1

and ¯̀−1 generate translations, (`0 + ¯̀
0) generates scalings, i(`0 − ¯̀

0) generates rotations,
and `1, ¯̀

1 generate special conformal transformations. Also, the `n, ¯̀
n satisfy the classical

Virasoro algebras:

[`m, `n] = (m− n)`m+n , [¯̀m, ¯̀
n] = (m− n)¯̀

m+n . (766)
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