PHY484S/1484S GR2 (2020-21) — HW3 — due @ 10am M22Mar

3.1: Geodesics from particle energy-momentum conservation /25/

The principle of covariant conservation of energy-momentum can be used to derive the
geodesic equation for a point particle providing the source of energy-momentum.

(a) [7] Starting from the Einbein action for a point particle coupled to gravity,
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and the definitions
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show that
Tofe) = e [ dA0)20) 57w = 2(3). 3)
V—9(@)
where in the massless case we really mean 1 instead of m, and . = d/dA\.

Hint: you may fix the einbein via e !(\) = m (massive, ‘proper time gauge’) or e *(\) =
1 (massless), where A is the affine parameter for the particle path z#(\).

(b) /9] Show that for an arbitrary rank (2,0) tensor T
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(c) [9] Where does the equation expressing covariant conservation of the energy-momentum
tensor

V,.T" =0 (5)

come from? Use this and results from (a) and (b), along with an integration by parts,
to show that covariant conservation of the particle energy-momentum tensor requires
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Where have you seen the piece inside square brackets before?

3.2: Explaining /25/

Describe the key concepts involved in cosmological perturbations, for an audience of students
who have finished the first GR course (PHY483F /1483F) but are not taking this course.
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3.3: Scalar field perturbations /20/

Suppose that our scalar inflaton ¢ with potential V() is written as a homogeneous isotropic
part plus perturbations:

Show that, to first order in small quantities, the perturbed rank (1,1) energy-momentum
tensor obeys
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where ' = d/dp and ® is the scalar metric perturbation in Newtonian gauge given below in
@D. Are the components 6T, independent of those listed in ?

3.4: Metric perturbations /30/

Suppose that spacetime perturbations about a £ = 0 FRW universe can be described in
Newtonian gauge by

ds® = [1 + 2®(t, 7)) dt* — [1 — 2®(t, T)] a®(t)|dZ|* . (9)
Show that, to first order in ®, the perturbed Christoffels are
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and others related to these by symmetry. Use these results to show that, again to first order
in small quantities, the perturbed rank (1,1) Einstein tensor obeys
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Are the components G, independent of those listed in ?




