
SAMPLE PAST MIDTERM SNIPPETS FOR PRACTISING ON

Concepts

• What is the defining property of a tensor? Give four examples of physically useful tensors in the
context of Special Relativity.

• In curved spacetime, why is the partial derivative of a tensor not a tensor? How do we build a covariant
derivative of a tensor that is a tensor?

• Why does a geodesic, the path followed by a freely falling observer in curved spacetime, maximize the
proper time?

• Explain the physical significance of the geodesic deviation equation.

• Sketch how taking the Newtonian limit of the geodesic deviation equation in curved spacetime gives
back the line deviation equation pertinent to tidal forces, working at linearized order in small quantities.

Calculations: index gymnastics

A conformal transformation takes one metric gµν to another g̃µν described by

g̃µν = Ω2(x)gµν , (1)

where Ω(x) is a scalar function of spacetime coordinates known as the conformal factor.

(a) What distinguishes a null particle trajectory from a timelike one? Explain why the trajectories of light
beams must remain unchanged under conformal transformations of the form (1).

(b) Starting from the definition of the Christoffels in terms of the metric, prove that the Christoffels Γ̃ρµν
for the conformally transformed metric are related to the original ones Γρµν by

Γ̃σµν = Γσµν + Ω−1
(
δσµ∇νΩ + δσν∇µΩ− gµνgσλ∇λΩ

)
. (2)

Note that the difference between the two Christoffels is a bona fide tensor, as it must be.

Calculations: Christoffels, Riemann, and geodesics

Consider AdS3 in global coordinates,

ds2 = L2
[
− cosh2r dt2 + dr2 + sinh2r dφ2

]
. (3)

(a) Use this metric in eq.(3) to show that the nonzero Christoffels are

Γttr(= Γtrt) =
sinh r

cosh r
, Γrtt = sinh r cosh r , Γφφr(= Γφrφ) , Γrφφ . (4)

Focus on finding Γttr and Γrtt. The precise functional form of Γφφr and Γrφφ will not matter for most of
the rest of this question.

(b) Find Rtrtr from the Christoffels above. After raising its second index, you should obtain

Rtr tr = +
1

L2
. (5)

If you have time to spare, work out the remaining two Christoffels in eq.(4) and show also that

Rtφ tφ = +
1

L2
, Rrφrφ = +

1

L2
. (6)
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(c) Using the Christoffels from eq.(4), show that the geodesic equations for radial motion are

d2t

dλ2
+ 2

dt

dλ

dr

dλ

sinh r

cosh r
= 0 , (7)

d2r

dλ2
+

(
dt

dλ

)2

sinh r cosh r = 0 . (8)

Show that the first of these two equations eq.(7) has a first integral yielding a conservation law,

E = cosh2 r
dt

dλ
= const. (9)

(d) A null geodesic has a null tangent vector,

gµν
dxµ

dλ

dxν

dλ
= 0 . (10)

Assuming radial motion, use this nullness condition eq.(10) and the conservation law eq.(9) to find an
equation for dr/dλ and integrate it to get r(λ). Then use your solution for r(λ) to find dt/dλ and
integrate it to get t(λ). Does it take a finite or infinite amount of coordinate time t to reach r → ∞,
starting from r = 0? Handy integrals (c, c′ are constants):∫

dx coshx = sinhx+ c

∫
dx

1 + x2
= arctan(x) + c′ (11)

If you can do all of the above, try doing the question again but with a different 3D spacetime, or with the
same spacetime but in a different coordinate system. If you fly through that too and want an extra challenge,
try finding Killing vectors of the above AdS3 metric.
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Formula sheet

Electric and magnetic fields in D = 3 + 1 flat Minkowski spacetime with Cartesian coordinates:-

F0i = −δijEj , Fij = EijkB
k , where Eijk = +1(−1) if ijk even (odd) perm. of 123 or 0 otherwise (12)

Invariant interval:
ds2 = gµνdx

µdxν (13)

Coordinate transformation law for rank (m,n) tensors V :

V µ1
′...µm

′

ν1′...νn′ =
∂xµ1

′

∂xλ1
. . .

∂xµm
′

∂xλm

∂xσ1

∂xν1′ . . .
∂xσn

∂xνn′ V
λ1...λm

σ1...σn
(14)

Indices are lowered with gµν and raised with gµν , where gµνg
νσ = δσµ and gµνgνσ = δµσ , e.g. for vector V :

Vµ = gµνV
ν (15)

Downstairs covariant derivative of rank (m,n) tensor V :

∇σV µ1...µm
ν1...νn = ∂σV

µ1...µm
ν1...νn + Γµ1

σλV
λµ2...µm

ν1...νn + Γµ2

σλV
µ1λµ3...µm

ν1...νn + . . .

− Γλ σν1V
µ1...µm

λν2...νn
− Γλ σν2V

µ1...µm

ν1λν3...νn
+ . . . (16)

Directional covariant derivative along curve xµ(λ):

D

Dλ
=
dxµ

dλ
∇µ (17)

Christoffel symbols, which are symmetric in ν ↔ σ:

Γµ νσ =
1

2
gµα (∂νgασ + ∂σgαν − ∂αgνσ) (18)

Metric compatibility condition for Christoffel connection:

∇σgµν = 0 (19)

Geodesic equation for xµ(λ), where λ is affine parameter:

D

Dλ

(
dxµ

dλ

)
=
d2xµ

dλ2
+ Γµ νσ

dxν

dλ

dxσ

dλ
= 0 (20)

Alternative form of geodesic equation:

d

dλ

dxµ
dλ

=
1

2
(∂µgνσ)

dxν

dλ

dxσ

dλ
(21)

Riemann tensor:
Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (22)

Riemann from commutator of covariant derivatives on a rank (k, `) tensor T :

[∇ρ,∇σ]Tµ1...µk
ν1...ν`

= +Rµ1

λρσT
λµ2...µk

ν1...ν`
+Rµ2

λρσT
µ1λµ3...µk

ν1...ν`
+ . . .

−Rλν1ρσT
µ1...µk

λν2...ν`
−Rλν2ρσT

µ1...µk

ν1λν3...ν`
− . . . (23)

Symmetries of Riemann:

Rαβγδ = −Rαβδγ , Rαβγδ = −Rβαγδ , Rαβγδ = Rγδαβ , R[αβγδ] = 0 (24)
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Geodesic deviation equation, where S is separation vector and T is tangent vector:

D2Sµ

Dλ2
= (∇T∇TS)µ = −RµνασT νTαSσ (25)

Newtonian limit and line deviation equation (x0 = ct):∣∣∣∣~vc
∣∣∣∣� 1 , |∂0| � |∂i| , ds2 '

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
|d~x|2 ,

∣∣∣∣Φc2
∣∣∣∣� 1

d2

dt2
yi = −δij(∂j∂kΦ)yk (26)
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