
PHY484S/1484S GR1 (2018-19) – HW1 – due @ 10am M04Feb2019

1.1: Geodesic equation from energy-momentum conservation

The principle of covariant conservation of energy-momentum can be used to derive the

geodesic equation for a point particle providing the source of energy-momentum.
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where in the massless case we really mean 1 instead of m, and . ⌘ d/d�.

Hint: you may fix the einbein via e
�1
(�) = m (massive, ‘proper time gauge’) or e

�1
(�) =

1 (massless), where � is the a�ne parameter for the particle path z
µ
(�).

(b) Show that for an arbitrary rank (2,0) tensor T
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(c) Using the Einstein equations (including the cosmological constant), the Bianchi identity

for the Riemann tensor, and metric compatibility of the Christo↵el connection, show

that any energy-momentum tensor coupled to gravity must be covariantly conserved,
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Then, by using the chain rule for di↵erentiation
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and recruiting integration by parts, show that covariant conservation of the particle

energy-momentum requires
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Therefore, the Einstein equations require the geodesic equations for the particle.
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