PHY484S/1484S GR1 (2018-19) - HW1 — due @ 10am M04Feb2019
1.1: Geodesic equation from energy-momentum conservation

The principle of covariant conservation of energy-momentum can be used to derive the
geodesic equation for a point particle providing the source of energy-momentum.

(a) Starting from the Einbein action
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where in the massless case we really mean 1 instead of m, and . = d/dA\.

Hint: you may fix the einbein via e '(\) = m (massive, ‘proper time gauge’) or e }(\) =
1 (massless), where A is the affine parameter for the particle path z#(\).

(b) Show that for an arbitrary rank (2,0) tensor 7'
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(c) Using the Einstein equations (including the cosmological constant), the Bianchi identity
for the Riemann tensor, and metric compatibility of the Christoffel connection, show
that any energy-momentum tensor coupled to gravity must be covariantly conserved,

vV, T" =0. (5)
Then, by using the chain rule for differentiation
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and recruiting integration by parts, show that covariant conservation of the particle
energy-momentum requires
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Therefore, the Einstein equations require the geodesic equations for the particle.



