
PHY483F/1483F (2018-19) – HW4 – due 11am R29Nov

4.1 How wide is the sun? [3 marks]

All massive objects look larger than they really are, because gravity bends light. Consider a light ray grazing
the surface of a massive sphere of coordinate radius r > 3GNM/c2. Show that the light ray will arrive at infinity
with impact parameter

b = r

(
r

r − 2GNM/c2

)1/2

. (1)

Hence show that the apparent diameter of the Sun, which has a mass of M� ∼ 2 × 1030 kg and a radius of
r� ∼ 7× 105 km, exceeds the coordinate diameter by nearly 3 km.

4.2 How fast do massive particles move in the Schwarzschild ISCO? [6 marks]

Show that a massive particle moving in the innermost stable circular orbit in the Schwarzschild geometry has
speed c/2 as measured by a stationary observer at this radius. Using this, calculate the period of the orbit as
measured by this local observer. What is the period of the orbit as measured by a stationary observer at infinity?

4.3 When is gravity attractive? [6 marks]

The key tool needed to figure out when gravity is attractive is the Raychaudhuri equations describing the
expansion of a congruence (group) of geodesics. Under certain technical assumptions which do not concern us
here, the expansion θ of a congruence of timelike geodesics obeys

dθ

dλ
= −1

3
θ2 − σµνσµν +Rµν u

µuν , (2)

where uµ is the timelike 4-velocity vector and the shear tensor σµν obeys σµνσ
µν ≥ 0. Under similar technical

assumptions, the expansion θ̂ of a congruence of null geodesics obeys

dθ̂

dλ
= −1

2
θ̂2 − σ̂µν σ̂µν +Rµν k

µkν , (3)

where kµ is a null vector and σ̂µν σ̂
µν ≥ 0.

(a) [2 marks] Recall the handy alternative form of the Einstein equations that you derived in HW31,

Rµν = −8πGN

(
Tµν −

1

2
gµνT

)
≡ −8πGN∆µν . (4)

Assuming the energy-momentum tensor takes perfect fluid form, find an expression for ∆µν in terms of the
energy density ρ, the pressure p, and the four-velocity field uµ.

(b) [4 marks] Show that for the expansion of timelike and null geodesic congruences to be non-positive, the
energy density and pressure must obey

ρ+ 3
p

c2
≥ 0 and ρ+

p

c2
≥ 0 . (5)

This is known as the Strong Energy Condition. The SEC is not obeyed by all forms of matter/energy in
our universe. Is it obeyed or disobeyed by the cosmological constant?

(Please Turn Page) →
1Here, Tµν counts the energy-momentum from both matter and the cosmological constant, if any.
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4.4 When do astronauts falling into Schwarzschild black holes die? [10 marks]

To understand tidal forces on an object falling into a Schwarzschild black hole, it is smartest to work in an
orthonormal basis instead of the usual coordinate basis (where the coordinate singularity at the horizon clouds
the physical interpretation). In an orthonormal basis, the geodesic deviation equation simplifies to

d2

dλ2
Sα̂ = +Rα̂

β̂γ̂δ̂
T β̂T γ̂S δ̂ . (6)

For any contravariant vector V or covariant vector ω, the hatted components in an orthonormal basis are obtained
from the unhatted ones we are used to via

V α̂ = (eα̂)µV
µ , ωα̂ = (eα̂)µωµ , (7)

where the (eα̂)µ and (eα̂)µ are defined by

gµν = ηα̂β̂(eα̂)µ(eβ̂)ν , gµν = ηα̂β̂(eα̂)µ(eβ̂)ν . (8)

The (eα̂)µ are the inverses of (eα̂)µ:

(eα̂)ν(eα̂)µ = δνµ , (eα̂)µ(eβ̂)µ = δα̂
β̂
. (9)

For the rank (1,3) Riemann tensor, the hatted components are obtained from the unhatted ones via a straight-
forward generalization of eq.s (7),

Rα̂
β̂γ̂δ̂

= Rµνσρ(e
α̂)µ(eβ̂)ν(eγ̂)σ(eδ̂)

ρ . (10)

For a massive particle released at rest from radius r in the Schwarzschild geometry for coordinates {t, r, θ, φ},
we can take the (eα̂)µ to be

(e0̂)µ =
√

1− 2µ/r δ0̂µ , (e1̂)µ =
1√

1− 2µ/r
δ1̂µ , (e2̂)µ = r δ2̂µ , (e3̂)µ = r sin θ δ3̂µ , (11)

which describes the inertial instantaneous rest frame (IIRF) of the particle.

(a) [3 marks] Show that the (eα̂)µ in eq. (11) satisfy the first set of eq.s (8). Then, using eq.s (9) and the second
set of eq.s (8), show that the (eβ̂)µ are given by

(e0̂)µ =
1√

1− 2µ/r
δµ
0̂
, (e1̂)µ =

√
1− 2µ/r δµ

1̂
, (e2̂)µ =

1

r
δµ
2̂
, (e3̂)µ =

1

r sin θ
δµ
3̂
. (12)

(b) [3 marks] Compute the components of Rµνσρ in {t, r, θ, φ} coordinates using Maxima. Then use eq. (10) to
find the hatted components of Riemann. You should find that

R1̂
0̂0̂1̂

= +2
µ

r3
, R2̂

0̂0̂2̂
= −1

µ

r3
= R3̂

0̂0̂3̂
, (13)

and three other equations.

(c) [2 marks] Assume that two slightly separated particles fall into the black hole purely radially. Find the hatted
components of the tangent vector T α̂, recalling that we drop the particles in from rest at radius r. Then,
assuming that the separation vector Sα̂ is purely spatial, show that by the geodesic deviation equation (6)

d2

dλ2
S1̂ = +2

µ

r3
S1̂ ,

d2

dλ2
S2̂ = −1

µ

r3
S2̂ ,

d2

dλ2
S3̂ = −1

µ

r3
S3̂ . (14)

Physically, this corresponds to stretching along the radial direction and compression (pressure) along angular
directions. This is why people sketch infalling astronauts as becoming taller and thinner the closer they get
to the singularity at r = 0, the location at which tidal forces blow up – they end up getting spaghettified!

(d) [2 marks] Argue from your answers above that tidal forces from smaller black holes are more violent at
the horizon than those from large ones. Assuming that the human limit on stretching/compression of body
tissues is an acceleration gradient of ∼ 400ms−2/m, how small must a Schwarzschild black hole be to ensure
that tidal forces kill a freely infalling astronaut even before they cross the event horizon? You should find
M . 105M�.
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